基于FPGA和传感器融合的实时姿态估计算法

László Schäffer, Zoltán Kincses, Szilveszter Pletl
{"title":"基于FPGA和传感器融合的实时姿态估计算法","authors":"László Schäffer, Zoltán Kincses, Szilveszter Pletl","doi":"10.1109/SISY.2018.8524610","DOIUrl":null,"url":null,"abstract":"Combining measurements of different sensors are a crucial step to achieve better precision in pose estimation. Sensor fusion is an effective state estimation method (in this case Kalman filter), which is used in several disciplines. Using sensor fusion, the information from the sensors and the characteristics of each sensor can be used together to improve the estimate and decrease the uncertainty of the measured variables. In this paper a real-time pose estimation algorithm using sensor fusion of visual odometry (optical flow), Inertial Measurement Unit (IMU) and Global Positioning System (GPS) measurements is presented. The IMU contains calibrated three degrees of freedom (3Dof) accelerometer and an also 3DoF gyroscope. A Kalman filter is used for the fusion of the measurements of the different sensors. The algorithm is implemented in MATLAB and on a low-cost Z-7010 Field-Programmable Gate Array (FPGA) using the ZYBO development board, which is capable of real-time pose estimation with sensor fusion.","PeriodicalId":6647,"journal":{"name":"2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY)","volume":"1999 1","pages":"000149-000154"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Real-Time Pose Estimation Algorithm Based on FPGA and Sensor Fusion\",\"authors\":\"László Schäffer, Zoltán Kincses, Szilveszter Pletl\",\"doi\":\"10.1109/SISY.2018.8524610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combining measurements of different sensors are a crucial step to achieve better precision in pose estimation. Sensor fusion is an effective state estimation method (in this case Kalman filter), which is used in several disciplines. Using sensor fusion, the information from the sensors and the characteristics of each sensor can be used together to improve the estimate and decrease the uncertainty of the measured variables. In this paper a real-time pose estimation algorithm using sensor fusion of visual odometry (optical flow), Inertial Measurement Unit (IMU) and Global Positioning System (GPS) measurements is presented. The IMU contains calibrated three degrees of freedom (3Dof) accelerometer and an also 3DoF gyroscope. A Kalman filter is used for the fusion of the measurements of the different sensors. The algorithm is implemented in MATLAB and on a low-cost Z-7010 Field-Programmable Gate Array (FPGA) using the ZYBO development board, which is capable of real-time pose estimation with sensor fusion.\",\"PeriodicalId\":6647,\"journal\":{\"name\":\"2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY)\",\"volume\":\"1999 1\",\"pages\":\"000149-000154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISY.2018.8524610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2018.8524610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

结合不同传感器的测量值是提高姿态估计精度的关键步骤。传感器融合是一种有效的状态估计方法(在本例中为卡尔曼滤波),应用于多个学科。利用传感器融合,可以将来自传感器的信息和每个传感器的特性结合起来,提高估计精度,降低被测变量的不确定度。本文提出了一种融合视觉里程计(光流)、惯性测量单元(IMU)和全球定位系统(GPS)测量数据的实时姿态估计算法。IMU包含校准的三自由度加速度计和一个三维陀螺仪。采用卡尔曼滤波对不同传感器的测量值进行融合。该算法在MATLAB和使用ZYBO开发板的低成本Z-7010现场可编程门阵列(FPGA)上实现,该算法能够通过传感器融合进行实时姿态估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Real-Time Pose Estimation Algorithm Based on FPGA and Sensor Fusion
Combining measurements of different sensors are a crucial step to achieve better precision in pose estimation. Sensor fusion is an effective state estimation method (in this case Kalman filter), which is used in several disciplines. Using sensor fusion, the information from the sensors and the characteristics of each sensor can be used together to improve the estimate and decrease the uncertainty of the measured variables. In this paper a real-time pose estimation algorithm using sensor fusion of visual odometry (optical flow), Inertial Measurement Unit (IMU) and Global Positioning System (GPS) measurements is presented. The IMU contains calibrated three degrees of freedom (3Dof) accelerometer and an also 3DoF gyroscope. A Kalman filter is used for the fusion of the measurements of the different sensors. The algorithm is implemented in MATLAB and on a low-cost Z-7010 Field-Programmable Gate Array (FPGA) using the ZYBO development board, which is capable of real-time pose estimation with sensor fusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信