关于数列{g_kn}和{h_kn}项的二项式和

IF 0.5 Q3 MATHEMATICS
S. Koparal, N. Ömür, C. Colak
{"title":"关于数列{g_kn}和{h_kn}项的二项式和","authors":"S. Koparal, N. Ömür, C. Colak","doi":"10.22190/FUMI191227003K","DOIUrl":null,"url":null,"abstract":"In this paper, we derive sums and alternating sums of products of terms ofthe sequences $\\left\\{ g_{kn}\\right\\} $ and $\\left\\{ h_{kn}\\right\\} $ withbinomial coefficients. For example,\\begin{eqnarray*} &\\sum\\limits_{i=0}^{n}\\binom{n}{i}\\left( -1\\right) ^{i} \\left(c^{2k}\\left(-q\\right) ^{k}+c^{k}v_{k}+1\\right)^{-ai}h_{k\\left( ai+b\\right) }h_{k\\left(ai+e\\right) } \\\\ &=\\left\\{ \\begin{array}{clc} -\\Delta ^{\\left( n+1\\right) /2}g_{k\\left( an+b+e\\right) }g_{ka}^{n}\\left( c^{2k}\\left( -q\\right) ^{k}+c^{k}v_{k}+1\\right) ^{-an} & \\text{if }n\\text{ is odd,} & \\\\ \\Delta ^{n/2}h_{k\\left( an+b+e\\right) }g_{ka}^{n}\\left( c^{2k}\\left( -q\\right) ^{k}+c^{k}v_{k}+1\\right) ^{-an} & \\text{if }n\\text{ is even,} & \\end{array}% \\right.\\end{eqnarray*}%and\\begin{eqnarray*} &&\\sum\\limits_{i=0}^{n}\\binom{n}{i}i^{\\underline{m}}g_{k\\left( n-ti\\right) }h_{kti} \\\\ &&=2^{n-m}n^{\\underline{m}}g_{kn}-n^{\\underline{m}}\\left( c^{2k}\\left( -q\\right) ^{k}+c^{k}v_{k}+1\\right) ^{n\\left( 1-t\\right) }h_{kt}^{n-m}g_{k\\left( tm+tn-n\\right) },\\end{eqnarray*}%where $a, b, e$ is any integer numbers, $c$ is nonzero real number and $m$is nonnegative integer.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"61 16 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON BINOMIAL SUMS WITH THE TERMS OF SEQUENCES {g_kn} AND {h_kn}\",\"authors\":\"S. Koparal, N. Ömür, C. Colak\",\"doi\":\"10.22190/FUMI191227003K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive sums and alternating sums of products of terms ofthe sequences $\\\\left\\\\{ g_{kn}\\\\right\\\\} $ and $\\\\left\\\\{ h_{kn}\\\\right\\\\} $ withbinomial coefficients. For example,\\\\begin{eqnarray*} &\\\\sum\\\\limits_{i=0}^{n}\\\\binom{n}{i}\\\\left( -1\\\\right) ^{i} \\\\left(c^{2k}\\\\left(-q\\\\right) ^{k}+c^{k}v_{k}+1\\\\right)^{-ai}h_{k\\\\left( ai+b\\\\right) }h_{k\\\\left(ai+e\\\\right) } \\\\\\\\ &=\\\\left\\\\{ \\\\begin{array}{clc} -\\\\Delta ^{\\\\left( n+1\\\\right) /2}g_{k\\\\left( an+b+e\\\\right) }g_{ka}^{n}\\\\left( c^{2k}\\\\left( -q\\\\right) ^{k}+c^{k}v_{k}+1\\\\right) ^{-an} & \\\\text{if }n\\\\text{ is odd,} & \\\\\\\\ \\\\Delta ^{n/2}h_{k\\\\left( an+b+e\\\\right) }g_{ka}^{n}\\\\left( c^{2k}\\\\left( -q\\\\right) ^{k}+c^{k}v_{k}+1\\\\right) ^{-an} & \\\\text{if }n\\\\text{ is even,} & \\\\end{array}% \\\\right.\\\\end{eqnarray*}%and\\\\begin{eqnarray*} &&\\\\sum\\\\limits_{i=0}^{n}\\\\binom{n}{i}i^{\\\\underline{m}}g_{k\\\\left( n-ti\\\\right) }h_{kti} \\\\\\\\ &&=2^{n-m}n^{\\\\underline{m}}g_{kn}-n^{\\\\underline{m}}\\\\left( c^{2k}\\\\left( -q\\\\right) ^{k}+c^{k}v_{k}+1\\\\right) ^{n\\\\left( 1-t\\\\right) }h_{kt}^{n-m}g_{k\\\\left( tm+tn-n\\\\right) },\\\\end{eqnarray*}%where $a, b, e$ is any integer numbers, $c$ is nonzero real number and $m$is nonnegative integer.\",\"PeriodicalId\":54148,\"journal\":{\"name\":\"Facta Universitatis-Series Mathematics and Informatics\",\"volume\":\"61 16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/FUMI191227003K\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/FUMI191227003K","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文导出了二项式系数序列$\left\{g_{kn}\right\} $和$\left\{h_{kn}\right\} $项乘积的和和和。例如,\ {eqnarray *} &开始\ \ limits_总和我= {0}^ {n} \ binom {n}{我}\离开(1 \右)^{我}\离开(c ^ {2 k} \离开(q \右)^ {k} + c ^ {k} v_ {k} + 1 \右)^ {ai} h_ {k \离开(ai + b \右)}h_ {k \左(ai + e \右 ) } \\ &=\ 左\{\{数组}{clc} - \三角洲开始^{\离开(n + 1 \右)/ 2}g_ {k \离开(+ b + e \右)}g_ {ka} ^ {n} \离开(c ^ {2 k} \离开(q \右)^ {k} + c ^ {k} v_ {k} + 1 \右)^{——}&文本{如果}\ n \文本{是奇数,}& \ \ \三角洲^ {n / 2} h_ {k \离开(+ b + e \右)}g_ {ka} ^ {n} \离开(c ^ {2 k} \离开(q \右)^ {k} + c ^ {k} v_ {k} + 1 \右)^{——}&\text{if}n\text{是偶数,}& \end{array}% \右。开始\ {eqnarray *} %和\ {eqnarray *} & & \ \ limits_总和我= {0}^ {n} \ binom {n}}{我^{\强调{m}} g_ {k \左(n-ti \右)}h_ {kti} \ \ & & = 2 ^ {n - m} n ^{\强调{m}} g_ {kn} - n ^{\强调{m}} \离开(c ^ {2 k} \离开(q \右)^ {k} + c ^ {k} v_ {k} + 1 \右)^ {n \左(右1 - t \)} h_ {kt} ^ {n - m} g_ {k \离开(tm + tn-n \右)},{eqnarray *} % \结束一个美元,b, e是任何整数数字,美元加元非零实数,m美元非负整数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON BINOMIAL SUMS WITH THE TERMS OF SEQUENCES {g_kn} AND {h_kn}
In this paper, we derive sums and alternating sums of products of terms ofthe sequences $\left\{ g_{kn}\right\} $ and $\left\{ h_{kn}\right\} $ withbinomial coefficients. For example,\begin{eqnarray*} &\sum\limits_{i=0}^{n}\binom{n}{i}\left( -1\right) ^{i} \left(c^{2k}\left(-q\right) ^{k}+c^{k}v_{k}+1\right)^{-ai}h_{k\left( ai+b\right) }h_{k\left(ai+e\right) } \\ &=\left\{ \begin{array}{clc} -\Delta ^{\left( n+1\right) /2}g_{k\left( an+b+e\right) }g_{ka}^{n}\left( c^{2k}\left( -q\right) ^{k}+c^{k}v_{k}+1\right) ^{-an} & \text{if }n\text{ is odd,} & \\ \Delta ^{n/2}h_{k\left( an+b+e\right) }g_{ka}^{n}\left( c^{2k}\left( -q\right) ^{k}+c^{k}v_{k}+1\right) ^{-an} & \text{if }n\text{ is even,} & \end{array}% \right.\end{eqnarray*}%and\begin{eqnarray*} &&\sum\limits_{i=0}^{n}\binom{n}{i}i^{\underline{m}}g_{k\left( n-ti\right) }h_{kti} \\ &&=2^{n-m}n^{\underline{m}}g_{kn}-n^{\underline{m}}\left( c^{2k}\left( -q\right) ^{k}+c^{k}v_{k}+1\right) ^{n\left( 1-t\right) }h_{kt}^{n-m}g_{k\left( tm+tn-n\right) },\end{eqnarray*}%where $a, b, e$ is any integer numbers, $c$ is nonzero real number and $m$is nonnegative integer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信