(Fe,CoFeB)/(Ta,Pt)自旋电子发射体的光学损伤阈值和太赫兹产生效率

Sandeep Kumar, A. Nivedan, Arvind Singh, Y. Kumar, Purnima Malhotra, M. Tondusson, E. Freysz, Sunil Kumar
{"title":"(Fe,CoFeB)/(Ta,Pt)自旋电子发射体的光学损伤阈值和太赫兹产生效率","authors":"Sandeep Kumar, A. Nivedan, Arvind Singh, Y. Kumar, Purnima Malhotra, M. Tondusson, E. Freysz, Sunil Kumar","doi":"10.2139/ssrn.3872949","DOIUrl":null,"url":null,"abstract":"THz pulses are generated from femtosecond pulse-excited ferromagnetic/nonmagnetic spintronic heterostructures via inverse spin Hall effect. The highest possible THz signal strength from spintronic THz emitters is limited by the optical damage threshold of the corresponding heterostructures at the excitation wavelength. For the thickness-optimized spintronic heterostructure, the THz generation efficiency does not saturate with the excitation fluence even up till the damage threshold. Bilayer (Fe, CoFeB)/(Pt, Ta) based FM/NM spintronic heterostructures have been studied for an optimized performance for THz generation when pumped by sub-50 fs amplified laser pulses at 800 nm. Among them, CoFeB/Pt is the best combination for an efficient THz source. The optimized FM/NM spintronic heterostructure on a quartz substrate, having α-phase Ta as the nonmagnetic layer, shows the highest damage threshold as compared to those with Pt, irrespective of their generation efficiency. The damage threshold of the Fe/Ta heterostructure on a quartz substrate is ~85 GW/cm2.","PeriodicalId":89488,"journal":{"name":"The electronic journal of human sexuality","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical Damage Threshold and THz Generation Efficiency of (Fe,CoFeB)/(Ta,Pt) Spintronic Emitters\",\"authors\":\"Sandeep Kumar, A. Nivedan, Arvind Singh, Y. Kumar, Purnima Malhotra, M. Tondusson, E. Freysz, Sunil Kumar\",\"doi\":\"10.2139/ssrn.3872949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"THz pulses are generated from femtosecond pulse-excited ferromagnetic/nonmagnetic spintronic heterostructures via inverse spin Hall effect. The highest possible THz signal strength from spintronic THz emitters is limited by the optical damage threshold of the corresponding heterostructures at the excitation wavelength. For the thickness-optimized spintronic heterostructure, the THz generation efficiency does not saturate with the excitation fluence even up till the damage threshold. Bilayer (Fe, CoFeB)/(Pt, Ta) based FM/NM spintronic heterostructures have been studied for an optimized performance for THz generation when pumped by sub-50 fs amplified laser pulses at 800 nm. Among them, CoFeB/Pt is the best combination for an efficient THz source. The optimized FM/NM spintronic heterostructure on a quartz substrate, having α-phase Ta as the nonmagnetic layer, shows the highest damage threshold as compared to those with Pt, irrespective of their generation efficiency. The damage threshold of the Fe/Ta heterostructure on a quartz substrate is ~85 GW/cm2.\",\"PeriodicalId\":89488,\"journal\":{\"name\":\"The electronic journal of human sexuality\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The electronic journal of human sexuality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3872949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The electronic journal of human sexuality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3872949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

太赫兹脉冲是由飞秒脉冲激发铁磁/非磁自旋电子异质结构通过逆自旋霍尔效应产生的。来自自旋电子太赫兹发射器的最高可能太赫兹信号强度受到相应异质结构在激发波长处的光学损伤阈值的限制。对于厚度优化的自旋电子异质结构,即使达到损伤阈值,太赫兹产生效率也不随激发通量饱和。本文研究了在800 NM激光脉冲泵浦下,双层(Fe, CoFeB)/(Pt, Ta)基FM/NM自旋电子异质结构在产生太赫兹时的最佳性能。其中,CoFeB/Pt是高效太赫兹源的最佳组合。在α-相Ta为非磁性层的石英衬底上,优化后的FM/NM自旋电子异质结构与Pt衬底相比具有最高的损伤阈值,而与它们的生成效率无关。石英衬底上Fe/Ta异质结构的损伤阈值为~85 GW/cm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical Damage Threshold and THz Generation Efficiency of (Fe,CoFeB)/(Ta,Pt) Spintronic Emitters
THz pulses are generated from femtosecond pulse-excited ferromagnetic/nonmagnetic spintronic heterostructures via inverse spin Hall effect. The highest possible THz signal strength from spintronic THz emitters is limited by the optical damage threshold of the corresponding heterostructures at the excitation wavelength. For the thickness-optimized spintronic heterostructure, the THz generation efficiency does not saturate with the excitation fluence even up till the damage threshold. Bilayer (Fe, CoFeB)/(Pt, Ta) based FM/NM spintronic heterostructures have been studied for an optimized performance for THz generation when pumped by sub-50 fs amplified laser pulses at 800 nm. Among them, CoFeB/Pt is the best combination for an efficient THz source. The optimized FM/NM spintronic heterostructure on a quartz substrate, having α-phase Ta as the nonmagnetic layer, shows the highest damage threshold as compared to those with Pt, irrespective of their generation efficiency. The damage threshold of the Fe/Ta heterostructure on a quartz substrate is ~85 GW/cm2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信