GFS:多千兆分组网络公平调度的有效实现

Georgios Kornaros, T. Orphanoudakis, I. Papaefstathiou
{"title":"GFS:多千兆分组网络公平调度的有效实现","authors":"Georgios Kornaros, T. Orphanoudakis, I. Papaefstathiou","doi":"10.1109/ASAP.2003.1212862","DOIUrl":null,"url":null,"abstract":"In order to address the challenge of providing quality of service guarantees in today's network processing systems, the use of efficient scheduling algorithms is required. The efficiency of a scheduler is determined by several factors including its fairness, capability to operate at high speeds, as well as the resources required for its implementation. We present an architecture to support fair scheduling (gigabit FS) considering variable length packets (i. e. for packet forwarding/switching networks) over gigabit links. This high speed scheduler is designed to manage 32 K flows based on an algorithm that yields efficient implementation in hardware by avoiding the complexity of computing the system virtual time function that many packet fair queueing (PFQ) algorithms have proposed. Further, we demonstrate the critical factors in designing an effective scheduling engine at gigabit rates and we present several enhancements together with their associated cost.","PeriodicalId":6642,"journal":{"name":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","volume":"16 1","pages":"389-399"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"GFS: An Efficient Implementation of Fair Scheduling for Mult-Gigabit Packet Networks\",\"authors\":\"Georgios Kornaros, T. Orphanoudakis, I. Papaefstathiou\",\"doi\":\"10.1109/ASAP.2003.1212862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to address the challenge of providing quality of service guarantees in today's network processing systems, the use of efficient scheduling algorithms is required. The efficiency of a scheduler is determined by several factors including its fairness, capability to operate at high speeds, as well as the resources required for its implementation. We present an architecture to support fair scheduling (gigabit FS) considering variable length packets (i. e. for packet forwarding/switching networks) over gigabit links. This high speed scheduler is designed to manage 32 K flows based on an algorithm that yields efficient implementation in hardware by avoiding the complexity of computing the system virtual time function that many packet fair queueing (PFQ) algorithms have proposed. Further, we demonstrate the critical factors in designing an effective scheduling engine at gigabit rates and we present several enhancements together with their associated cost.\",\"PeriodicalId\":6642,\"journal\":{\"name\":\"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)\",\"volume\":\"16 1\",\"pages\":\"389-399\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.2003.1212862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2003.1212862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了解决在当今网络处理系统中提供服务质量保证的挑战,需要使用高效的调度算法。调度器的效率由几个因素决定,包括它的公平性、高速运行的能力以及实现所需的资源。我们提出了一个架构,以支持公平调度(千兆FS)考虑可变长度的数据包(即数据包转发/交换网络)在千兆链路。该高速调度器设计用于管理32k流,基于一种算法,该算法通过避免许多包公平排队(PFQ)算法所提出的计算系统虚拟时间函数的复杂性,从而在硬件上实现高效。此外,我们还演示了在千兆速率下设计有效调度引擎的关键因素,并介绍了几种增强功能及其相关成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GFS: An Efficient Implementation of Fair Scheduling for Mult-Gigabit Packet Networks
In order to address the challenge of providing quality of service guarantees in today's network processing systems, the use of efficient scheduling algorithms is required. The efficiency of a scheduler is determined by several factors including its fairness, capability to operate at high speeds, as well as the resources required for its implementation. We present an architecture to support fair scheduling (gigabit FS) considering variable length packets (i. e. for packet forwarding/switching networks) over gigabit links. This high speed scheduler is designed to manage 32 K flows based on an algorithm that yields efficient implementation in hardware by avoiding the complexity of computing the system virtual time function that many packet fair queueing (PFQ) algorithms have proposed. Further, we demonstrate the critical factors in designing an effective scheduling engine at gigabit rates and we present several enhancements together with their associated cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信