{"title":"从小探头获得的冷却曲线数据计算Kobasko的简化传热系数","authors":"R. Otero","doi":"10.1520/JAI104304","DOIUrl":null,"url":null,"abstract":"Although heat transfer coefficient characterization of quench severity is not new, there continues to be a need for the rapid and relatively simple calculation of heat transfer coefficients from time-temperature cooling curve data files obtained via test methods such as ASTM D6200, D6482, D6549, and D7646, which utilize relatively small cylindrical test probes with diameters of ≤12.5 mm. One method that may be readily used is Kobasko’s computational method for effective heat transfer coefficients, which is based on time-temperature data obtained at the geometric center of small test probes during cooling curve analysis. A description of the step-by-step procedure for performing these calculations on actual experimental data is provided here.","PeriodicalId":15057,"journal":{"name":"Journal of Astm International","volume":"02 1","pages":"104304"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Calculation of Kobasko's Simplified Heat Transfer Coefficients from Cooling Curve Data Obtained with Small Probes\",\"authors\":\"R. Otero\",\"doi\":\"10.1520/JAI104304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although heat transfer coefficient characterization of quench severity is not new, there continues to be a need for the rapid and relatively simple calculation of heat transfer coefficients from time-temperature cooling curve data files obtained via test methods such as ASTM D6200, D6482, D6549, and D7646, which utilize relatively small cylindrical test probes with diameters of ≤12.5 mm. One method that may be readily used is Kobasko’s computational method for effective heat transfer coefficients, which is based on time-temperature data obtained at the geometric center of small test probes during cooling curve analysis. A description of the step-by-step procedure for performing these calculations on actual experimental data is provided here.\",\"PeriodicalId\":15057,\"journal\":{\"name\":\"Journal of Astm International\",\"volume\":\"02 1\",\"pages\":\"104304\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astm International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1520/JAI104304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astm International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/JAI104304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Calculation of Kobasko's Simplified Heat Transfer Coefficients from Cooling Curve Data Obtained with Small Probes
Although heat transfer coefficient characterization of quench severity is not new, there continues to be a need for the rapid and relatively simple calculation of heat transfer coefficients from time-temperature cooling curve data files obtained via test methods such as ASTM D6200, D6482, D6549, and D7646, which utilize relatively small cylindrical test probes with diameters of ≤12.5 mm. One method that may be readily used is Kobasko’s computational method for effective heat transfer coefficients, which is based on time-temperature data obtained at the geometric center of small test probes during cooling curve analysis. A description of the step-by-step procedure for performing these calculations on actual experimental data is provided here.