额外的斐波那契-伯努利关系

Q4 Mathematics
K. Adegoke, R. Frontczak, T. Goy
{"title":"额外的斐波那契-伯努利关系","authors":"K. Adegoke, R. Frontczak, T. Goy","doi":"10.15421/242208","DOIUrl":null,"url":null,"abstract":"We continue our study on relationships between Fibonacci (Lucas) numbers and Bernoulli numbers and polynomials. The derivations of our results are based on functional equations for the respective generating functions, which in our case are combinations of hyperbolic functions. Special cases and some corollaries will highlight interesting aspects of our findings.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additional Fibonacci-Bernoulli relations\",\"authors\":\"K. Adegoke, R. Frontczak, T. Goy\",\"doi\":\"10.15421/242208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue our study on relationships between Fibonacci (Lucas) numbers and Bernoulli numbers and polynomials. The derivations of our results are based on functional equations for the respective generating functions, which in our case are combinations of hyperbolic functions. Special cases and some corollaries will highlight interesting aspects of our findings.\",\"PeriodicalId\":52827,\"journal\":{\"name\":\"Researches in Mathematics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Researches in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15421/242208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/242208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们继续研究斐波那契(卢卡斯)数与伯努利数和多项式之间的关系。我们的结果的推导是基于各自生成函数的函数方程,在我们的情况下是双曲函数的组合。特殊情况和一些推论将突出我们发现的有趣方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Additional Fibonacci-Bernoulli relations
We continue our study on relationships between Fibonacci (Lucas) numbers and Bernoulli numbers and polynomials. The derivations of our results are based on functional equations for the respective generating functions, which in our case are combinations of hyperbolic functions. Special cases and some corollaries will highlight interesting aspects of our findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信