一些非齐次Gagliardo-Nirenberg不等式及其在双调和非线性Schrödinger方程中的应用

Antonio J. Fern'andez, L. Jeanjean, Rainer Mandel, M. Mariş
{"title":"一些非齐次Gagliardo-Nirenberg不等式及其在双调和非线性Schrödinger方程中的应用","authors":"Antonio J. Fern'andez, L. Jeanjean, Rainer Mandel, M. Mariş","doi":"10.5445/IR/1000124276","DOIUrl":null,"url":null,"abstract":"We study the standing waves for a fourth-order Schrodinger equation with mixed dispersion that minimize the associated energy when the $L^2$-norm (the $\\textit{mass}$) is kept fixed. We need some non-homogeneous Gagliardo−Nirenberg-type inequalities and we develop a method to prove such estimates that should be useful elsewhere. We prove optimal results on the existence of minimizers in the $\\textit{mass-subcritical}$ and $\\textit{mass-critical}$ cases. In the $\\textit{mass super-critical}$ case we show that global minimizers do not exist, and we investigate the existence of local minimizers. If the mass does not exceed some threshold $μ_0\\in (0,+\\infty)$, our results on \"best\" local minimizers are also optimal.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Some non-homogeneous Gagliardo–Nirenberg inequalities and application to a biharmonic non-linear Schrödinger equation\",\"authors\":\"Antonio J. Fern'andez, L. Jeanjean, Rainer Mandel, M. Mariş\",\"doi\":\"10.5445/IR/1000124276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the standing waves for a fourth-order Schrodinger equation with mixed dispersion that minimize the associated energy when the $L^2$-norm (the $\\\\textit{mass}$) is kept fixed. We need some non-homogeneous Gagliardo−Nirenberg-type inequalities and we develop a method to prove such estimates that should be useful elsewhere. We prove optimal results on the existence of minimizers in the $\\\\textit{mass-subcritical}$ and $\\\\textit{mass-critical}$ cases. In the $\\\\textit{mass super-critical}$ case we show that global minimizers do not exist, and we investigate the existence of local minimizers. If the mass does not exceed some threshold $μ_0\\\\in (0,+\\\\infty)$, our results on \\\"best\\\" local minimizers are also optimal.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5445/IR/1000124276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5445/IR/1000124276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们研究了具有混合色散的四阶薛定谔方程的驻波,当$L^2$ -范数($\textit{mass}$)保持固定时,该方程的相关能量最小。我们需要一些非齐次的Gagliardo - nirenberg型不等式,并且我们开发了一种方法来证明这种估计,它应该在其他地方有用。在$\textit{mass-subcritical}$和$\textit{mass-critical}$情况下,我们证明了最小值存在的最优结果。在$\textit{mass super-critical}$的情况下,我们证明了全局极小值不存在,并研究了局部极小值的存在性。如果质量不超过某个阈值$μ_0\in (0,+\infty)$,我们关于“最佳”局部最小值的结果也是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some non-homogeneous Gagliardo–Nirenberg inequalities and application to a biharmonic non-linear Schrödinger equation
We study the standing waves for a fourth-order Schrodinger equation with mixed dispersion that minimize the associated energy when the $L^2$-norm (the $\textit{mass}$) is kept fixed. We need some non-homogeneous Gagliardo−Nirenberg-type inequalities and we develop a method to prove such estimates that should be useful elsewhere. We prove optimal results on the existence of minimizers in the $\textit{mass-subcritical}$ and $\textit{mass-critical}$ cases. In the $\textit{mass super-critical}$ case we show that global minimizers do not exist, and we investigate the existence of local minimizers. If the mass does not exceed some threshold $μ_0\in (0,+\infty)$, our results on "best" local minimizers are also optimal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信