{"title":"行列式恒等式的一致、积分和可行证明","authors":"Iddo Tzameret, S. Cook","doi":"10.1145/3431922","DOIUrl":null,"url":null,"abstract":"Aiming to provide weak as possible axiomatic assumptions in which one can develop basic linear algebra, we give a uniform and integral version of the short propositional proofs for the determinant identities demonstrated over GF(2) in Hrubeš-Tzameret [15]. Specifically, we show that the multiplicativity of the determinant function and the Cayley-Hamilton theorem over the integers are provable in the bounded arithmetic theory VNC2; the latter is a first-order theory corresponding to the complexity class NC2 consisting of problems solvable by uniform families of polynomial-size circuits and O(log2 n)-depth. This also establishes the existence of uniform polynomial-size propositional proofs operating with NC2-circuits of the basic determinant identities over the integers (previous propositional proofs hold only over the two-element field).","PeriodicalId":17199,"journal":{"name":"Journal of the ACM (JACM)","volume":"9 35 1","pages":"1 - 80"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Uniform, Integral, and Feasible Proofs for the Determinant Identities\",\"authors\":\"Iddo Tzameret, S. Cook\",\"doi\":\"10.1145/3431922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming to provide weak as possible axiomatic assumptions in which one can develop basic linear algebra, we give a uniform and integral version of the short propositional proofs for the determinant identities demonstrated over GF(2) in Hrubeš-Tzameret [15]. Specifically, we show that the multiplicativity of the determinant function and the Cayley-Hamilton theorem over the integers are provable in the bounded arithmetic theory VNC2; the latter is a first-order theory corresponding to the complexity class NC2 consisting of problems solvable by uniform families of polynomial-size circuits and O(log2 n)-depth. This also establishes the existence of uniform polynomial-size propositional proofs operating with NC2-circuits of the basic determinant identities over the integers (previous propositional proofs hold only over the two-element field).\",\"PeriodicalId\":17199,\"journal\":{\"name\":\"Journal of the ACM (JACM)\",\"volume\":\"9 35 1\",\"pages\":\"1 - 80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM (JACM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3431922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM (JACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3431922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uniform, Integral, and Feasible Proofs for the Determinant Identities
Aiming to provide weak as possible axiomatic assumptions in which one can develop basic linear algebra, we give a uniform and integral version of the short propositional proofs for the determinant identities demonstrated over GF(2) in Hrubeš-Tzameret [15]. Specifically, we show that the multiplicativity of the determinant function and the Cayley-Hamilton theorem over the integers are provable in the bounded arithmetic theory VNC2; the latter is a first-order theory corresponding to the complexity class NC2 consisting of problems solvable by uniform families of polynomial-size circuits and O(log2 n)-depth. This also establishes the existence of uniform polynomial-size propositional proofs operating with NC2-circuits of the basic determinant identities over the integers (previous propositional proofs hold only over the two-element field).