行列式恒等式的一致、积分和可行证明

Iddo Tzameret, S. Cook
{"title":"行列式恒等式的一致、积分和可行证明","authors":"Iddo Tzameret, S. Cook","doi":"10.1145/3431922","DOIUrl":null,"url":null,"abstract":"Aiming to provide weak as possible axiomatic assumptions in which one can develop basic linear algebra, we give a uniform and integral version of the short propositional proofs for the determinant identities demonstrated over GF(2) in Hrubeš-Tzameret [15]. Specifically, we show that the multiplicativity of the determinant function and the Cayley-Hamilton theorem over the integers are provable in the bounded arithmetic theory VNC2; the latter is a first-order theory corresponding to the complexity class NC2 consisting of problems solvable by uniform families of polynomial-size circuits and O(log2 n)-depth. This also establishes the existence of uniform polynomial-size propositional proofs operating with NC2-circuits of the basic determinant identities over the integers (previous propositional proofs hold only over the two-element field).","PeriodicalId":17199,"journal":{"name":"Journal of the ACM (JACM)","volume":"9 35 1","pages":"1 - 80"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Uniform, Integral, and Feasible Proofs for the Determinant Identities\",\"authors\":\"Iddo Tzameret, S. Cook\",\"doi\":\"10.1145/3431922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming to provide weak as possible axiomatic assumptions in which one can develop basic linear algebra, we give a uniform and integral version of the short propositional proofs for the determinant identities demonstrated over GF(2) in Hrubeš-Tzameret [15]. Specifically, we show that the multiplicativity of the determinant function and the Cayley-Hamilton theorem over the integers are provable in the bounded arithmetic theory VNC2; the latter is a first-order theory corresponding to the complexity class NC2 consisting of problems solvable by uniform families of polynomial-size circuits and O(log2 n)-depth. This also establishes the existence of uniform polynomial-size propositional proofs operating with NC2-circuits of the basic determinant identities over the integers (previous propositional proofs hold only over the two-element field).\",\"PeriodicalId\":17199,\"journal\":{\"name\":\"Journal of the ACM (JACM)\",\"volume\":\"9 35 1\",\"pages\":\"1 - 80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM (JACM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3431922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM (JACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3431922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了提供尽可能弱的公理假设,在这些假设中人们可以发展基本的线性代数,我们给出了在Hrubeš-Tzameret[15]中GF(2)上证明的行列式恒等式的短命题证明的统一和积分版本。具体地说,我们证明了行列式函数的乘法性和整数上的Cayley-Hamilton定理在有界算术理论VNC2中是可证明的;后者是一个一阶理论,对应于复杂度类NC2,由多项式大小电路的统一族和O(log2 n)深度可解的问题组成。这也建立了在整数上用基本行列式恒等式的nc2回路操作的一致多项式大小的命题证明的存在性(先前的命题证明只在二元域上成立)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform, Integral, and Feasible Proofs for the Determinant Identities
Aiming to provide weak as possible axiomatic assumptions in which one can develop basic linear algebra, we give a uniform and integral version of the short propositional proofs for the determinant identities demonstrated over GF(2) in Hrubeš-Tzameret [15]. Specifically, we show that the multiplicativity of the determinant function and the Cayley-Hamilton theorem over the integers are provable in the bounded arithmetic theory VNC2; the latter is a first-order theory corresponding to the complexity class NC2 consisting of problems solvable by uniform families of polynomial-size circuits and O(log2 n)-depth. This also establishes the existence of uniform polynomial-size propositional proofs operating with NC2-circuits of the basic determinant identities over the integers (previous propositional proofs hold only over the two-element field).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信