L. Witek, Adham Alifarag, N. Tovar, Christopher D Lopez, L. Gil, M. Gorbonosov, Kaitlin Hannan, R. Neiva, P. Coelho
{"title":"骨密度钻孔制备的截骨术中骨小梁金属钽植入物周围的成骨参数","authors":"L. Witek, Adham Alifarag, N. Tovar, Christopher D Lopez, L. Gil, M. Gorbonosov, Kaitlin Hannan, R. Neiva, P. Coelho","doi":"10.4317/medoral.23108","DOIUrl":null,"url":null,"abstract":"Background Surgical fixation of implants into bone for the correction of bone deformities or defects is a traditional approach for skeletal stabilization. Important measures of efficacy of implants include implant stability and osseointegration—the direct interaction between living bone and an implant. Osseointegration depends on successful implant placement and subsequent bone remodeling. This study utilized osseodensification drilling (OD) in a low bone density model using trabecular metal (TM) implants. Material and Methods Three osteotomy sites, Regular, OD-CW (clockwise), and OD-CCW (counterclockwise), were prepared in each ilium of three female sheep. Drilling was performed at 1100rpm with saline irrigation. Trabecular metal (TM) (Zimmer®, Parsippany, NJ, USA) implants measuring 3.7mm in diameter x 10mm length were placed into respective osteotomies. A three-week period post-surgery was given to allow for healing to take place after which all three sheep were euthanized and the ilia were collected. Samples were prepared, qualitatively and quantitatively analyzed using histology micrographs and image analysis software (ImageJ, NIH, Bethesda, MD). Bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were quantified to evaluate the osseointegration parameters. Results All implants exhibit successful bone formation in the peri-implant environment as well as within the open spaces of the trabecular network. Osseointegration within the TM (quantified by %BIC) as a function of drilling technique was more pronounced in OD samples(p>0.05). The %BAFO however shows a significant difference (p=0.036) between the CCW and R samples. Greater bone volume and frequency of bone chips are observed in OD samples. Conclusions The utilization of OD as a design for improved fixation of hardware was supported by increased levels of stability, both primary and secondary. Histological data with OD provided notably different results from those of the regular drilling method. Key words:Osseodensification drilling, trabecular tantalum metal, osteotomies, implants, subtractive drilling.","PeriodicalId":18367,"journal":{"name":"Medicina Oral, Patología Oral y Cirugía Bucal","volume":"11 1","pages":"e764 - e769"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Osteogenic parameters surrounding trabecular tantalum metal implants in osteotomies prepared via osseodensification drilling\",\"authors\":\"L. Witek, Adham Alifarag, N. Tovar, Christopher D Lopez, L. Gil, M. Gorbonosov, Kaitlin Hannan, R. Neiva, P. Coelho\",\"doi\":\"10.4317/medoral.23108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background Surgical fixation of implants into bone for the correction of bone deformities or defects is a traditional approach for skeletal stabilization. Important measures of efficacy of implants include implant stability and osseointegration—the direct interaction between living bone and an implant. Osseointegration depends on successful implant placement and subsequent bone remodeling. This study utilized osseodensification drilling (OD) in a low bone density model using trabecular metal (TM) implants. Material and Methods Three osteotomy sites, Regular, OD-CW (clockwise), and OD-CCW (counterclockwise), were prepared in each ilium of three female sheep. Drilling was performed at 1100rpm with saline irrigation. Trabecular metal (TM) (Zimmer®, Parsippany, NJ, USA) implants measuring 3.7mm in diameter x 10mm length were placed into respective osteotomies. A three-week period post-surgery was given to allow for healing to take place after which all three sheep were euthanized and the ilia were collected. Samples were prepared, qualitatively and quantitatively analyzed using histology micrographs and image analysis software (ImageJ, NIH, Bethesda, MD). Bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were quantified to evaluate the osseointegration parameters. Results All implants exhibit successful bone formation in the peri-implant environment as well as within the open spaces of the trabecular network. Osseointegration within the TM (quantified by %BIC) as a function of drilling technique was more pronounced in OD samples(p>0.05). The %BAFO however shows a significant difference (p=0.036) between the CCW and R samples. Greater bone volume and frequency of bone chips are observed in OD samples. Conclusions The utilization of OD as a design for improved fixation of hardware was supported by increased levels of stability, both primary and secondary. Histological data with OD provided notably different results from those of the regular drilling method. Key words:Osseodensification drilling, trabecular tantalum metal, osteotomies, implants, subtractive drilling.\",\"PeriodicalId\":18367,\"journal\":{\"name\":\"Medicina Oral, Patología Oral y Cirugía Bucal\",\"volume\":\"11 1\",\"pages\":\"e764 - e769\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicina Oral, Patología Oral y Cirugía Bucal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4317/medoral.23108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicina Oral, Patología Oral y Cirugía Bucal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4317/medoral.23108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Osteogenic parameters surrounding trabecular tantalum metal implants in osteotomies prepared via osseodensification drilling
Background Surgical fixation of implants into bone for the correction of bone deformities or defects is a traditional approach for skeletal stabilization. Important measures of efficacy of implants include implant stability and osseointegration—the direct interaction between living bone and an implant. Osseointegration depends on successful implant placement and subsequent bone remodeling. This study utilized osseodensification drilling (OD) in a low bone density model using trabecular metal (TM) implants. Material and Methods Three osteotomy sites, Regular, OD-CW (clockwise), and OD-CCW (counterclockwise), were prepared in each ilium of three female sheep. Drilling was performed at 1100rpm with saline irrigation. Trabecular metal (TM) (Zimmer®, Parsippany, NJ, USA) implants measuring 3.7mm in diameter x 10mm length were placed into respective osteotomies. A three-week period post-surgery was given to allow for healing to take place after which all three sheep were euthanized and the ilia were collected. Samples were prepared, qualitatively and quantitatively analyzed using histology micrographs and image analysis software (ImageJ, NIH, Bethesda, MD). Bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were quantified to evaluate the osseointegration parameters. Results All implants exhibit successful bone formation in the peri-implant environment as well as within the open spaces of the trabecular network. Osseointegration within the TM (quantified by %BIC) as a function of drilling technique was more pronounced in OD samples(p>0.05). The %BAFO however shows a significant difference (p=0.036) between the CCW and R samples. Greater bone volume and frequency of bone chips are observed in OD samples. Conclusions The utilization of OD as a design for improved fixation of hardware was supported by increased levels of stability, both primary and secondary. Histological data with OD provided notably different results from those of the regular drilling method. Key words:Osseodensification drilling, trabecular tantalum metal, osteotomies, implants, subtractive drilling.