基于自配置的虚拟化GPU资源自动共享

Jianguo Yao, Q. Lu, Zhengwei Qi
{"title":"基于自配置的虚拟化GPU资源自动共享","authors":"Jianguo Yao, Q. Lu, Zhengwei Qi","doi":"10.1109/SRDS.2017.35","DOIUrl":null,"url":null,"abstract":"In this paper, we propose Auto-vGPU, a framework of automated resource sharing for virtualized GPU with self-configuration, to reduce manual intervention in system management while ensuring Service Level Agreement (SLA) targets. Auto-vGPU automatically collects the measurements of system metrics and learns a linear model for each application with dimension reduction. In order to fulfill the automated configuration of controller parameters, we propose a self-control-configuration method featuring the theory of automatic tuning of proportional-integral (PI) regulators. The experimental results of cloud gaming implementation demonstrate that Auto-vGPU is able to automatically build the low-dimension model and configure the control parameters without any manual interventions and the derived controller can adaptively allocate virtualized GPU resource to ensure the high performance of cloud applications.","PeriodicalId":6475,"journal":{"name":"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)","volume":"1 1","pages":"250-252"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automated Resource Sharing for Virtualized GPU with Self-Configuration\",\"authors\":\"Jianguo Yao, Q. Lu, Zhengwei Qi\",\"doi\":\"10.1109/SRDS.2017.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose Auto-vGPU, a framework of automated resource sharing for virtualized GPU with self-configuration, to reduce manual intervention in system management while ensuring Service Level Agreement (SLA) targets. Auto-vGPU automatically collects the measurements of system metrics and learns a linear model for each application with dimension reduction. In order to fulfill the automated configuration of controller parameters, we propose a self-control-configuration method featuring the theory of automatic tuning of proportional-integral (PI) regulators. The experimental results of cloud gaming implementation demonstrate that Auto-vGPU is able to automatically build the low-dimension model and configure the control parameters without any manual interventions and the derived controller can adaptively allocate virtualized GPU resource to ensure the high performance of cloud applications.\",\"PeriodicalId\":6475,\"journal\":{\"name\":\"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)\",\"volume\":\"1 1\",\"pages\":\"250-252\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SRDS.2017.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2017.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了Auto-vGPU,一个自配置的虚拟化GPU自动资源共享框架,以减少对系统管理的人工干预,同时保证服务水平协议(SLA)的目标。Auto-vGPU自动收集系统指标的测量值,并通过降维学习每个应用程序的线性模型。为了实现控制器参数的自动组态,我们提出了一种基于比例积分调节器自动整定理论的自控制组态方法。云游戏实现的实验结果表明,Auto-vGPU能够在不需要人工干预的情况下自动构建低维模型和配置控制参数,派生的控制器能够自适应分配虚拟化GPU资源,保证云应用的高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Resource Sharing for Virtualized GPU with Self-Configuration
In this paper, we propose Auto-vGPU, a framework of automated resource sharing for virtualized GPU with self-configuration, to reduce manual intervention in system management while ensuring Service Level Agreement (SLA) targets. Auto-vGPU automatically collects the measurements of system metrics and learns a linear model for each application with dimension reduction. In order to fulfill the automated configuration of controller parameters, we propose a self-control-configuration method featuring the theory of automatic tuning of proportional-integral (PI) regulators. The experimental results of cloud gaming implementation demonstrate that Auto-vGPU is able to automatically build the low-dimension model and configure the control parameters without any manual interventions and the derived controller can adaptively allocate virtualized GPU resource to ensure the high performance of cloud applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信