{"title":"的$p$ -可积的teichm<e:1>空间 $p \\geqslant 1$","authors":"Huaying Wei, Katsuhiko Matsuzaki","doi":"10.3792/pjaa.99.008","DOIUrl":null,"url":null,"abstract":"We verify that the $p$-integrable Teichm\\\"uller space $T_p$ admits the canonical complex Banach manifold structure for any $p \\geq 1$. Moreover, we characterize a quasisymmetric homeomorphism corresponding to an element of $T_p$ in terms of the $p$-Besov space for any $p>1$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The $p$-integrable Teichmüller space for $p \\\\geqslant 1$\",\"authors\":\"Huaying Wei, Katsuhiko Matsuzaki\",\"doi\":\"10.3792/pjaa.99.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We verify that the $p$-integrable Teichm\\\\\\\"uller space $T_p$ admits the canonical complex Banach manifold structure for any $p \\\\geq 1$. Moreover, we characterize a quasisymmetric homeomorphism corresponding to an element of $T_p$ in terms of the $p$-Besov space for any $p>1$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/pjaa.99.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/pjaa.99.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The $p$-integrable Teichmüller space for $p \geqslant 1$
We verify that the $p$-integrable Teichm\"uller space $T_p$ admits the canonical complex Banach manifold structure for any $p \geq 1$. Moreover, we characterize a quasisymmetric homeomorphism corresponding to an element of $T_p$ in terms of the $p$-Besov space for any $p>1$.