使用深度学习生成嵌入特征用于种族识别

Mohammed Alghaili, Zhiyong Li, Ahmed Jawad A. AlBdairi, Malasy Katiyalath
{"title":"使用深度学习生成嵌入特征用于种族识别","authors":"Mohammed Alghaili, Zhiyong Li, Ahmed Jawad A. AlBdairi, Malasy Katiyalath","doi":"10.34028/iajit/20/4/13","DOIUrl":null,"url":null,"abstract":"Although significant advances have been made recently in the field of ethnics recognition through face recognition, there is still a lack of studies of ethnics recognition through facial recognition. This study is concerned with ethnics recognition through facial representation using a few images used as samples for any selected group of ethnics using a deep neural network with a Variational Feature Learning (VFL) loss function that has been used to increase the performance accuracy during the evaluation process. The output of a deep neural network is an embedding of 128 bytes for each face image in each group of ethnics. After that, all embeddings of every face in each group of ethnics pass to a machine learning classification method like a Support Vector Machine (SVM). We achieved state-of-the-art ethnic recognition. The system achieved a classification accuracy of 97.3% on a collected group of image dataset collected from three different countries.","PeriodicalId":13624,"journal":{"name":"Int. Arab J. Inf. Technol.","volume":"3 1","pages":"669-677"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating embedding features using deep learning for ethnics recognition\",\"authors\":\"Mohammed Alghaili, Zhiyong Li, Ahmed Jawad A. AlBdairi, Malasy Katiyalath\",\"doi\":\"10.34028/iajit/20/4/13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although significant advances have been made recently in the field of ethnics recognition through face recognition, there is still a lack of studies of ethnics recognition through facial recognition. This study is concerned with ethnics recognition through facial representation using a few images used as samples for any selected group of ethnics using a deep neural network with a Variational Feature Learning (VFL) loss function that has been used to increase the performance accuracy during the evaluation process. The output of a deep neural network is an embedding of 128 bytes for each face image in each group of ethnics. After that, all embeddings of every face in each group of ethnics pass to a machine learning classification method like a Support Vector Machine (SVM). We achieved state-of-the-art ethnic recognition. The system achieved a classification accuracy of 97.3% on a collected group of image dataset collected from three different countries.\",\"PeriodicalId\":13624,\"journal\":{\"name\":\"Int. Arab J. Inf. Technol.\",\"volume\":\"3 1\",\"pages\":\"669-677\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. Arab J. Inf. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34028/iajit/20/4/13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. Arab J. Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34028/iajit/20/4/13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管近年来人脸识别在民族识别领域取得了重大进展,但人脸识别在民族识别方面的研究仍然不足。本研究关注的是通过面部表征进行种族识别,使用少量图像作为任何选定种族群体的样本,使用带有变分特征学习(VFL)损失函数的深度神经网络,该损失函数已用于提高评估过程中的性能准确性。深度神经网络的输出是对每个种族的每个人脸图像进行128字节的嵌入。之后,每个种族组中每个面孔的所有嵌入都传递给机器学习分类方法,如支持向量机(SVM)。我们实现了最先进的民族承认。该系统在收集的来自三个不同国家的图像数据集上实现了97.3%的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating embedding features using deep learning for ethnics recognition
Although significant advances have been made recently in the field of ethnics recognition through face recognition, there is still a lack of studies of ethnics recognition through facial recognition. This study is concerned with ethnics recognition through facial representation using a few images used as samples for any selected group of ethnics using a deep neural network with a Variational Feature Learning (VFL) loss function that has been used to increase the performance accuracy during the evaluation process. The output of a deep neural network is an embedding of 128 bytes for each face image in each group of ethnics. After that, all embeddings of every face in each group of ethnics pass to a machine learning classification method like a Support Vector Machine (SVM). We achieved state-of-the-art ethnic recognition. The system achieved a classification accuracy of 97.3% on a collected group of image dataset collected from three different countries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信