Deepak Kumar Sharma, M. Devgan, Gaurav Malik, Prashant Dutt, Aarti Goel, Deepak Gupta, F. Al-turjman
{"title":"在雾授权网络中使用异常检测的DDoS防护架构","authors":"Deepak Kumar Sharma, M. Devgan, Gaurav Malik, Prashant Dutt, Aarti Goel, Deepak Gupta, F. Al-turjman","doi":"10.3233/AIS-210600","DOIUrl":null,"url":null,"abstract":"The world of computation has shown wide variety of wonders in the past decade with Internet of Things (IoT) being one of the most promising technology. Emergence of IoT brings a lot of good to the technology pool with its capability to provide intelligent services to the users. With ease to use, IoT is backed by a strong Cloud based infrastructure which allows the sensory IoT devices to perform specific functions. Important features of cloud are its reliability and security where the latter must be dealt with proper care. Cloud centric systems are susceptible to Denial of Service (DoS) attacks wherein the cloud server is subjected to an overwhelming number of incoming requests by a malicious device. If the same attack is carried out by a network of devices such as IoT devices then it becomes a Distributed DoS (DDoS) attack. A DDoS attack may render the server useless for a long period of time causing the services to crash due to extensive load. This paper proposes a lightweight, efficient and robust method for DDoS attack by detecting the compromised node connected to the Fog node or edge devices before it reaches the cloud by taking advantage of the Fog layer and prevent it from harming any information recorded or from increasing the unnecessary traffic in a network. The chosen technology stack consists of languages and frameworks which allow proposed approach to works in real time complexity for faster execution and is flexible enough to work on low level systems such as the Fog nodes. The proposed approach uses mathematical models for forecasting data points and therefore does not rely on a computationally heavy approach such as neural networks for predicting the expected values. This approach can be easily modelled into the firmware of the system and can help make cloud services more reliable by cutting off rogue nodes that try to attack the cloud at any given point of time.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"52 1","pages":"201-217"},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DDoS prevention architecture using anomaly detection in fog-empowered networks\",\"authors\":\"Deepak Kumar Sharma, M. Devgan, Gaurav Malik, Prashant Dutt, Aarti Goel, Deepak Gupta, F. Al-turjman\",\"doi\":\"10.3233/AIS-210600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The world of computation has shown wide variety of wonders in the past decade with Internet of Things (IoT) being one of the most promising technology. Emergence of IoT brings a lot of good to the technology pool with its capability to provide intelligent services to the users. With ease to use, IoT is backed by a strong Cloud based infrastructure which allows the sensory IoT devices to perform specific functions. Important features of cloud are its reliability and security where the latter must be dealt with proper care. Cloud centric systems are susceptible to Denial of Service (DoS) attacks wherein the cloud server is subjected to an overwhelming number of incoming requests by a malicious device. If the same attack is carried out by a network of devices such as IoT devices then it becomes a Distributed DoS (DDoS) attack. A DDoS attack may render the server useless for a long period of time causing the services to crash due to extensive load. This paper proposes a lightweight, efficient and robust method for DDoS attack by detecting the compromised node connected to the Fog node or edge devices before it reaches the cloud by taking advantage of the Fog layer and prevent it from harming any information recorded or from increasing the unnecessary traffic in a network. The chosen technology stack consists of languages and frameworks which allow proposed approach to works in real time complexity for faster execution and is flexible enough to work on low level systems such as the Fog nodes. The proposed approach uses mathematical models for forecasting data points and therefore does not rely on a computationally heavy approach such as neural networks for predicting the expected values. This approach can be easily modelled into the firmware of the system and can help make cloud services more reliable by cutting off rogue nodes that try to attack the cloud at any given point of time.\",\"PeriodicalId\":49316,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Smart Environments\",\"volume\":\"52 1\",\"pages\":\"201-217\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Smart Environments\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/AIS-210600\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/AIS-210600","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
DDoS prevention architecture using anomaly detection in fog-empowered networks
The world of computation has shown wide variety of wonders in the past decade with Internet of Things (IoT) being one of the most promising technology. Emergence of IoT brings a lot of good to the technology pool with its capability to provide intelligent services to the users. With ease to use, IoT is backed by a strong Cloud based infrastructure which allows the sensory IoT devices to perform specific functions. Important features of cloud are its reliability and security where the latter must be dealt with proper care. Cloud centric systems are susceptible to Denial of Service (DoS) attacks wherein the cloud server is subjected to an overwhelming number of incoming requests by a malicious device. If the same attack is carried out by a network of devices such as IoT devices then it becomes a Distributed DoS (DDoS) attack. A DDoS attack may render the server useless for a long period of time causing the services to crash due to extensive load. This paper proposes a lightweight, efficient and robust method for DDoS attack by detecting the compromised node connected to the Fog node or edge devices before it reaches the cloud by taking advantage of the Fog layer and prevent it from harming any information recorded or from increasing the unnecessary traffic in a network. The chosen technology stack consists of languages and frameworks which allow proposed approach to works in real time complexity for faster execution and is flexible enough to work on low level systems such as the Fog nodes. The proposed approach uses mathematical models for forecasting data points and therefore does not rely on a computationally heavy approach such as neural networks for predicting the expected values. This approach can be easily modelled into the firmware of the system and can help make cloud services more reliable by cutting off rogue nodes that try to attack the cloud at any given point of time.
期刊介绍:
The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.