基于人工神经网络反演技术的欠驱动机器人机械手定位控制

Ali T. Hasan
{"title":"基于人工神经网络反演技术的欠驱动机器人机械手定位控制","authors":"Ali T. Hasan","doi":"10.1155/2012/927905","DOIUrl":null,"url":null,"abstract":"This paper is devoted to solve the positioning control problem of underactuated robot manipulator. Artificial Neural Networks Inversion technique was used where a network represents the forward dynamics of the system trained to learn the position of the passive joint over the working space of a 2R underactuated robot. The obtained weights from the learning process were fixed, and the network was inverted to represent the inverse dynamics of the system and then used in the estimation phase to estimate the position of the passive joint for a new set of data the network was not previously trained for. Data used in this research are recorded experimentally from sensors fixed on the robot joints in order to overcome whichever uncertainties presence in the real world such as ill-defined linkage parameters, links flexibility, and backlashes in gear trains. Results were verified experimentally to show the success of the proposed control strategy.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Under-Actuated Robot Manipulator Positioning Control Using Artificial Neural Network Inversion Technique\",\"authors\":\"Ali T. Hasan\",\"doi\":\"10.1155/2012/927905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to solve the positioning control problem of underactuated robot manipulator. Artificial Neural Networks Inversion technique was used where a network represents the forward dynamics of the system trained to learn the position of the passive joint over the working space of a 2R underactuated robot. The obtained weights from the learning process were fixed, and the network was inverted to represent the inverse dynamics of the system and then used in the estimation phase to estimate the position of the passive joint for a new set of data the network was not previously trained for. Data used in this research are recorded experimentally from sensors fixed on the robot joints in order to overcome whichever uncertainties presence in the real world such as ill-defined linkage parameters, links flexibility, and backlashes in gear trains. Results were verified experimentally to show the success of the proposed control strategy.\",\"PeriodicalId\":7253,\"journal\":{\"name\":\"Adv. Artif. Intell.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/927905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/927905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文致力于解决欠驱动机器人机械手的定位控制问题。采用人工神经网络反演技术,其中网络表示系统的前向动力学,以学习被动关节在2R欠驱动机器人工作空间中的位置。从学习过程中获得的权值是固定的,然后对网络进行反转以表示系统的逆动力学,然后在估计阶段用于对网络之前未训练过的新数据集估计被动关节的位置。本研究中使用的数据是由固定在机器人关节上的传感器实验记录的,以克服现实世界中存在的任何不确定性,如连杆参数定义不清、连杆灵活性和齿轮系的间隙。实验结果验证了所提控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Under-Actuated Robot Manipulator Positioning Control Using Artificial Neural Network Inversion Technique
This paper is devoted to solve the positioning control problem of underactuated robot manipulator. Artificial Neural Networks Inversion technique was used where a network represents the forward dynamics of the system trained to learn the position of the passive joint over the working space of a 2R underactuated robot. The obtained weights from the learning process were fixed, and the network was inverted to represent the inverse dynamics of the system and then used in the estimation phase to estimate the position of the passive joint for a new set of data the network was not previously trained for. Data used in this research are recorded experimentally from sensors fixed on the robot joints in order to overcome whichever uncertainties presence in the real world such as ill-defined linkage parameters, links flexibility, and backlashes in gear trains. Results were verified experimentally to show the success of the proposed control strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信