使用机器视觉跟踪增材制造

Lenning A. Davis IV, J. Donnal, M. Kutzer
{"title":"使用机器视觉跟踪增材制造","authors":"Lenning A. Davis IV, J. Donnal, M. Kutzer","doi":"10.1109/NAP51477.2020.9309721","DOIUrl":null,"url":null,"abstract":"This paper presents a method of vision-based trajectory reconstruction for additive manufacturing (AM). With the rise in popularity of AM comes severe cyber-physical risks. Towards addressing this issue, this paper presents a method of reconstructing printhead motion with a minimally invasive camera module retrofit. A feature based Visual Odometry (VO) algorithm is used to estimate the relative motion of the extruder, leveraging expanded methods from the MATLAB Computer Vision Toolbox. Preliminary results in simulation demonstrate feasibility of the proposed VO method and identify factors that may limit performance. Further, a hardware implementation is demonstrated on a retrofitted LulzBot TAZ6, as well as novel methods to improve feature-based VO performance.","PeriodicalId":6770,"journal":{"name":"2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"90 1","pages":"02SAMA22-1-02SAMA22-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking Additive Manufacturing Using Machine Vision\",\"authors\":\"Lenning A. Davis IV, J. Donnal, M. Kutzer\",\"doi\":\"10.1109/NAP51477.2020.9309721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method of vision-based trajectory reconstruction for additive manufacturing (AM). With the rise in popularity of AM comes severe cyber-physical risks. Towards addressing this issue, this paper presents a method of reconstructing printhead motion with a minimally invasive camera module retrofit. A feature based Visual Odometry (VO) algorithm is used to estimate the relative motion of the extruder, leveraging expanded methods from the MATLAB Computer Vision Toolbox. Preliminary results in simulation demonstrate feasibility of the proposed VO method and identify factors that may limit performance. Further, a hardware implementation is demonstrated on a retrofitted LulzBot TAZ6, as well as novel methods to improve feature-based VO performance.\",\"PeriodicalId\":6770,\"journal\":{\"name\":\"2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP)\",\"volume\":\"90 1\",\"pages\":\"02SAMA22-1-02SAMA22-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAP51477.2020.9309721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAP51477.2020.9309721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于视觉的增材制造(AM)轨迹重建方法。随着增材制造的普及,随之而来的是严重的网络物理风险。为了解决这一问题,本文提出了一种利用微创相机模块改造重建打印头运动的方法。利用MATLAB计算机视觉工具箱中的扩展方法,利用基于特征的视觉里程计(VO)算法来估计挤出机的相对运动。初步的仿真结果证明了所提出的VO方法的可行性,并确定了可能限制性能的因素。此外,还在改装的LulzBot TAZ6上演示了硬件实现,以及改进基于特征的VO性能的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracking Additive Manufacturing Using Machine Vision
This paper presents a method of vision-based trajectory reconstruction for additive manufacturing (AM). With the rise in popularity of AM comes severe cyber-physical risks. Towards addressing this issue, this paper presents a method of reconstructing printhead motion with a minimally invasive camera module retrofit. A feature based Visual Odometry (VO) algorithm is used to estimate the relative motion of the extruder, leveraging expanded methods from the MATLAB Computer Vision Toolbox. Preliminary results in simulation demonstrate feasibility of the proposed VO method and identify factors that may limit performance. Further, a hardware implementation is demonstrated on a retrofitted LulzBot TAZ6, as well as novel methods to improve feature-based VO performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信