{"title":"晶体学中的数字模式","authors":"John S. Rutherford","doi":"10.1016/j.cryseng.2004.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>Although the number patterns generated by the integer solutions of equations such as<span><span><span><math><mtext>h</mtext><msup><mi></mi><mn><mtext>2</mtext></mn></msup><mtext>+k</mtext><msup><mi></mi><mn><mtext>2</mtext></mn></msup><mtext>+l</mtext><msup><mi></mi><mn><mtext>2</mtext></mn></msup><mtext>=n</mtext></math></span></span></span>are of fundamental importance in crystallography, little work has been done to apply number theory, perhaps the most famous and fundamental area of mathematics, to problems involving the three-dimensional lattices on which crystal structures are based. The relevance of the work of such giants as Euler, Riemann, Dirichlet and Erdos to some crystallographic questions are discussed.</p></div>","PeriodicalId":10766,"journal":{"name":"Crystal Engineering","volume":"6 4","pages":"Pages 225-234"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cryseng.2004.04.003","citationCount":"0","resultStr":"{\"title\":\"Number patterns in crystallography\",\"authors\":\"John S. Rutherford\",\"doi\":\"10.1016/j.cryseng.2004.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although the number patterns generated by the integer solutions of equations such as<span><span><span><math><mtext>h</mtext><msup><mi></mi><mn><mtext>2</mtext></mn></msup><mtext>+k</mtext><msup><mi></mi><mn><mtext>2</mtext></mn></msup><mtext>+l</mtext><msup><mi></mi><mn><mtext>2</mtext></mn></msup><mtext>=n</mtext></math></span></span></span>are of fundamental importance in crystallography, little work has been done to apply number theory, perhaps the most famous and fundamental area of mathematics, to problems involving the three-dimensional lattices on which crystal structures are based. The relevance of the work of such giants as Euler, Riemann, Dirichlet and Erdos to some crystallographic questions are discussed.</p></div>\",\"PeriodicalId\":10766,\"journal\":{\"name\":\"Crystal Engineering\",\"volume\":\"6 4\",\"pages\":\"Pages 225-234\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.cryseng.2004.04.003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1463018404000103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463018404000103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Although the number patterns generated by the integer solutions of equations such asare of fundamental importance in crystallography, little work has been done to apply number theory, perhaps the most famous and fundamental area of mathematics, to problems involving the three-dimensional lattices on which crystal structures are based. The relevance of the work of such giants as Euler, Riemann, Dirichlet and Erdos to some crystallographic questions are discussed.