{"title":"低功耗性能可控生物芯片的层次化多电压设计技术","authors":"Yu-Shin Wang, Ching-Hwa Cheng","doi":"10.1109/ICCE-TW.2016.7520984","DOIUrl":null,"url":null,"abstract":"A Hierarchy Multiple-Voltage (HMulti-Vdd) design technique is proposed in this paper which can effectively reduce power consumption. This paper presents an EDA automation design flow that facilitates separation of high-voltage and low-voltage module in synthesis stage. The proposed HMulti-Vdd methodology can be utilized to identify how many voltage domain and how low supplied voltage are better to design a low-power chip, while include the performance estimation. The HMulti-Vdd software tool includes a low-power multi-Vdd chip design optimization process and joint with several commercial circuit synthesis, physical design tools. Using HMulti-Vdd, the designed module voltage assignment is based on power, delay-time and gate-count analysis. HMulti-Vdd can help designer to reduce the Multi-Vdd design manually efforts. For several designed bio-chips have been validates by using this tool, the power consumption can be effectively reduced up to 50%, and the performance loss can be controlled within 5%.","PeriodicalId":6620,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","volume":"23 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A hierarchy multiple-voltage design technique for low-power performance-manageable bio-chips\",\"authors\":\"Yu-Shin Wang, Ching-Hwa Cheng\",\"doi\":\"10.1109/ICCE-TW.2016.7520984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Hierarchy Multiple-Voltage (HMulti-Vdd) design technique is proposed in this paper which can effectively reduce power consumption. This paper presents an EDA automation design flow that facilitates separation of high-voltage and low-voltage module in synthesis stage. The proposed HMulti-Vdd methodology can be utilized to identify how many voltage domain and how low supplied voltage are better to design a low-power chip, while include the performance estimation. The HMulti-Vdd software tool includes a low-power multi-Vdd chip design optimization process and joint with several commercial circuit synthesis, physical design tools. Using HMulti-Vdd, the designed module voltage assignment is based on power, delay-time and gate-count analysis. HMulti-Vdd can help designer to reduce the Multi-Vdd design manually efforts. For several designed bio-chips have been validates by using this tool, the power consumption can be effectively reduced up to 50%, and the performance loss can be controlled within 5%.\",\"PeriodicalId\":6620,\"journal\":{\"name\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"volume\":\"23 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-TW.2016.7520984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2016.7520984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A hierarchy multiple-voltage design technique for low-power performance-manageable bio-chips
A Hierarchy Multiple-Voltage (HMulti-Vdd) design technique is proposed in this paper which can effectively reduce power consumption. This paper presents an EDA automation design flow that facilitates separation of high-voltage and low-voltage module in synthesis stage. The proposed HMulti-Vdd methodology can be utilized to identify how many voltage domain and how low supplied voltage are better to design a low-power chip, while include the performance estimation. The HMulti-Vdd software tool includes a low-power multi-Vdd chip design optimization process and joint with several commercial circuit synthesis, physical design tools. Using HMulti-Vdd, the designed module voltage assignment is based on power, delay-time and gate-count analysis. HMulti-Vdd can help designer to reduce the Multi-Vdd design manually efforts. For several designed bio-chips have been validates by using this tool, the power consumption can be effectively reduced up to 50%, and the performance loss can be controlled within 5%.