高度非线性的稳定函数

T. Cusick
{"title":"高度非线性的稳定函数","authors":"T. Cusick","doi":"10.1049/iet-ifs.2016.0131","DOIUrl":null,"url":null,"abstract":"The authors describe a method for producing Boolean functions of degree d ≥ 3 in n = 2dk − 1 (k = 1,  2,  …) variables, such that the functions are plateaued and balanced, have high nonlinearity and have no linear structures. The nonlinearity is 2 n−1 − 2(n−1)/2, which is the same as the largest possible nonlinearity for a quadratic function in n (odd) variables (the so-called ‘quadratic bound’). Their theorem uses some new ideas to generalise a theorem, which gave the case d = 3, in a 2009 paper by Fengrong Zhang et al. They discuss the cryptographic properties and applications for the functions.","PeriodicalId":13305,"journal":{"name":"IET Inf. Secur.","volume":"1 1","pages":"78-81"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Highly nonlinear plateaued functions\",\"authors\":\"T. Cusick\",\"doi\":\"10.1049/iet-ifs.2016.0131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors describe a method for producing Boolean functions of degree d ≥ 3 in n = 2dk − 1 (k = 1,  2,  …) variables, such that the functions are plateaued and balanced, have high nonlinearity and have no linear structures. The nonlinearity is 2 n−1 − 2(n−1)/2, which is the same as the largest possible nonlinearity for a quadratic function in n (odd) variables (the so-called ‘quadratic bound’). Their theorem uses some new ideas to generalise a theorem, which gave the case d = 3, in a 2009 paper by Fengrong Zhang et al. They discuss the cryptographic properties and applications for the functions.\",\"PeriodicalId\":13305,\"journal\":{\"name\":\"IET Inf. Secur.\",\"volume\":\"1 1\",\"pages\":\"78-81\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Inf. Secur.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/iet-ifs.2016.0131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-ifs.2016.0131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

描述了在n = 2dk−1 (k = 1,2,…)个变量中产生d≥3次布尔函数的方法,该函数是平稳平衡的,具有高度非线性,没有线性结构。非线性是2 n−1−2(n−1)/2,这与n(奇数)个变量的二次函数(所谓的“二次界”)的最大非线性相同。他们的定理使用了一些新的思想来推广一个定理,该定理给出了2009年张凤荣等人的一篇论文d = 3的情况。讨论了这些函数的密码学性质及其应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly nonlinear plateaued functions
The authors describe a method for producing Boolean functions of degree d ≥ 3 in n = 2dk − 1 (k = 1,  2,  …) variables, such that the functions are plateaued and balanced, have high nonlinearity and have no linear structures. The nonlinearity is 2 n−1 − 2(n−1)/2, which is the same as the largest possible nonlinearity for a quadratic function in n (odd) variables (the so-called ‘quadratic bound’). Their theorem uses some new ideas to generalise a theorem, which gave the case d = 3, in a 2009 paper by Fengrong Zhang et al. They discuss the cryptographic properties and applications for the functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信