基于多时相MSAVI2数据的卫星影像农田圈定低参数方法

IF 1.1 Q4 OPTICS
M. A. Pavlova, V. Timofeev, D. Bocharov, D. Sidorchuk, A. L. Nurmukhametov, A. Nikonorov, M.S. Yarykina, I. Kunina, A. Smagina, M. Zagarev
{"title":"基于多时相MSAVI2数据的卫星影像农田圈定低参数方法","authors":"M. A. Pavlova, V. Timofeev, D. Bocharov, D. Sidorchuk, A. L. Nurmukhametov, A. Nikonorov, M.S. Yarykina, I. Kunina, A. Smagina, M. Zagarev","doi":"10.18287/-6179-co-1235","DOIUrl":null,"url":null,"abstract":"This paper considers an issue of delineating agricultural fields in satellite images. In this task we follow a multi-temporal data approach. We show that on such data, good quality can be achieved using a simple low-parameter method. The method consists of a combination of a field detector and an edge detector. The field detection is based on an Otsu thresholding technique and for the edge detection we use a Canny detector. Facing a lack of available datasets and aiming to estimate the proposed algorithm, we prepared and published our dataset consisting of 18,859 expertly annotated fields using Sentinel-2 data. We implement one of the state-of-the-art deep-learning approaches and compare it with the proposed method on our dataset. The experiment shows the proposed simple multi-temporal algorithm to outperform the state-of-the-art instant data approach. This result confirms the importance of using multi-temporal data and for the first time demonstrates that the delineation problem can be solved at a lower cost without loss of quality. Our approach requires a significantly less amount of training data when compared with the NN-based one. The dataset of agricultural fields used in the work and the proposed algorithm implementation in Python are published in open access.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":"85 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-parameter method for delineation of agricultural fields in satellite images based on multi-temporal MSAVI2 data\",\"authors\":\"M. A. Pavlova, V. Timofeev, D. Bocharov, D. Sidorchuk, A. L. Nurmukhametov, A. Nikonorov, M.S. Yarykina, I. Kunina, A. Smagina, M. Zagarev\",\"doi\":\"10.18287/-6179-co-1235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers an issue of delineating agricultural fields in satellite images. In this task we follow a multi-temporal data approach. We show that on such data, good quality can be achieved using a simple low-parameter method. The method consists of a combination of a field detector and an edge detector. The field detection is based on an Otsu thresholding technique and for the edge detection we use a Canny detector. Facing a lack of available datasets and aiming to estimate the proposed algorithm, we prepared and published our dataset consisting of 18,859 expertly annotated fields using Sentinel-2 data. We implement one of the state-of-the-art deep-learning approaches and compare it with the proposed method on our dataset. The experiment shows the proposed simple multi-temporal algorithm to outperform the state-of-the-art instant data approach. This result confirms the importance of using multi-temporal data and for the first time demonstrates that the delineation problem can be solved at a lower cost without loss of quality. Our approach requires a significantly less amount of training data when compared with the NN-based one. The dataset of agricultural fields used in the work and the proposed algorithm implementation in Python are published in open access.\",\"PeriodicalId\":46692,\"journal\":{\"name\":\"Computer Optics\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/-6179-co-1235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/-6179-co-1235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在卫星图像中对农田进行圈定的问题。在本任务中,我们采用多时间数据方法。我们表明,在这样的数据上,使用简单的低参数方法可以获得良好的质量。该方法由场检测器和边缘检测器的组合组成。现场检测基于Otsu阈值分割技术,边缘检测使用Canny检测器。面对可用数据集的缺乏,为了估计所提出的算法,我们使用Sentinel-2数据准备并发布了由18,859个专业注释字段组成的数据集。我们实现了最先进的深度学习方法之一,并将其与我们的数据集上提出的方法进行了比较。实验表明,本文提出的简单多时态算法优于当前最先进的即时数据方法。该结果证实了使用多时相数据的重要性,并首次证明了可以在不损失质量的情况下以较低的成本解决圈定问题。与基于nn的方法相比,我们的方法需要的训练数据量要少得多。工作中使用的农业领域数据集和在Python中提出的算法实现以开放获取的方式发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-parameter method for delineation of agricultural fields in satellite images based on multi-temporal MSAVI2 data
This paper considers an issue of delineating agricultural fields in satellite images. In this task we follow a multi-temporal data approach. We show that on such data, good quality can be achieved using a simple low-parameter method. The method consists of a combination of a field detector and an edge detector. The field detection is based on an Otsu thresholding technique and for the edge detection we use a Canny detector. Facing a lack of available datasets and aiming to estimate the proposed algorithm, we prepared and published our dataset consisting of 18,859 expertly annotated fields using Sentinel-2 data. We implement one of the state-of-the-art deep-learning approaches and compare it with the proposed method on our dataset. The experiment shows the proposed simple multi-temporal algorithm to outperform the state-of-the-art instant data approach. This result confirms the importance of using multi-temporal data and for the first time demonstrates that the delineation problem can be solved at a lower cost without loss of quality. Our approach requires a significantly less amount of training data when compared with the NN-based one. The dataset of agricultural fields used in the work and the proposed algorithm implementation in Python are published in open access.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Optics
Computer Optics OPTICS-
CiteScore
4.20
自引率
10.00%
发文量
73
审稿时长
9 weeks
期刊介绍: The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信