基于自适应特征关联和语义上下文的非参数场景解析

Gautam Singh, J. Kosecka
{"title":"基于自适应特征关联和语义上下文的非参数场景解析","authors":"Gautam Singh, J. Kosecka","doi":"10.1109/CVPR.2013.405","DOIUrl":null,"url":null,"abstract":"This paper presents a nonparametric approach to semantic parsing using small patches and simple gradient, color and location features. We learn the relevance of individual feature channels at test time using a locally adaptive distance metric. To further improve the accuracy of the nonparametric approach, we examine the importance of the retrieval set used to compute the nearest neighbours using a novel semantic descriptor to retrieve better candidates. The approach is validated by experiments on several datasets used for semantic parsing demonstrating the superiority of the method compared to the state of art approaches.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"27 1","pages":"3151-3157"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":"{\"title\":\"Nonparametric Scene Parsing with Adaptive Feature Relevance and Semantic Context\",\"authors\":\"Gautam Singh, J. Kosecka\",\"doi\":\"10.1109/CVPR.2013.405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a nonparametric approach to semantic parsing using small patches and simple gradient, color and location features. We learn the relevance of individual feature channels at test time using a locally adaptive distance metric. To further improve the accuracy of the nonparametric approach, we examine the importance of the retrieval set used to compute the nearest neighbours using a novel semantic descriptor to retrieve better candidates. The approach is validated by experiments on several datasets used for semantic parsing demonstrating the superiority of the method compared to the state of art approaches.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"27 1\",\"pages\":\"3151-3157\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"97\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

摘要

本文提出了一种利用小块和简单的梯度、颜色和位置特征进行语义分析的非参数方法。我们在测试时使用局部自适应距离度量来学习单个特征通道的相关性。为了进一步提高非参数方法的准确性,我们使用一种新的语义描述符来检查用于计算最近邻的检索集的重要性,以检索更好的候选对象。该方法在多个用于语义分析的数据集上进行了实验验证,证明了该方法与现有方法相比的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric Scene Parsing with Adaptive Feature Relevance and Semantic Context
This paper presents a nonparametric approach to semantic parsing using small patches and simple gradient, color and location features. We learn the relevance of individual feature channels at test time using a locally adaptive distance metric. To further improve the accuracy of the nonparametric approach, we examine the importance of the retrieval set used to compute the nearest neighbours using a novel semantic descriptor to retrieve better candidates. The approach is validated by experiments on several datasets used for semantic parsing demonstrating the superiority of the method compared to the state of art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信