算法997

R. Speck
{"title":"算法997","authors":"R. Speck","doi":"10.1145/3310410","DOIUrl":null,"url":null,"abstract":"In this article, we present the Python framework pySDC for solving collocation problems with spectral deferred correction (SDC) methods and their time-parallel variant PFASST, the parallel full approximation scheme in space and time. pySDC features many implementations of SDC and PFASST, from simple implicit timestepping to high-order implicit-explicit or multi-implicit splitting and multilevel SDCs. The software package comes with many different, preimplemented examples and has seven tutorials to help new users with their first steps. Time parallelism is implemented either in an emulated way for debugging and prototyping or using MPI for benchmarking. The code is fully documented and tested using continuous integration, including most results of previous publications. Here, we describe the structure of the code by taking two different perspectives: those of the user and those of the developer. The first sheds light on the front-end, the examples, and the tutorials, and the second is used to describe the underlying implementation and the data structures. We show three different examples to highlight various aspects of the implementation, the capabilities, and the usage of pySDC. In addition, couplings to the FEniCS framework and PETSc, the latter including spatial parallelism with MPI, are described.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"72 1","pages":"1 - 23"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Algorithm 997\",\"authors\":\"R. Speck\",\"doi\":\"10.1145/3310410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present the Python framework pySDC for solving collocation problems with spectral deferred correction (SDC) methods and their time-parallel variant PFASST, the parallel full approximation scheme in space and time. pySDC features many implementations of SDC and PFASST, from simple implicit timestepping to high-order implicit-explicit or multi-implicit splitting and multilevel SDCs. The software package comes with many different, preimplemented examples and has seven tutorials to help new users with their first steps. Time parallelism is implemented either in an emulated way for debugging and prototyping or using MPI for benchmarking. The code is fully documented and tested using continuous integration, including most results of previous publications. Here, we describe the structure of the code by taking two different perspectives: those of the user and those of the developer. The first sheds light on the front-end, the examples, and the tutorials, and the second is used to describe the underlying implementation and the data structures. We show three different examples to highlight various aspects of the implementation, the capabilities, and the usage of pySDC. In addition, couplings to the FEniCS framework and PETSc, the latter including spatial parallelism with MPI, are described.\",\"PeriodicalId\":7036,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software (TOMS)\",\"volume\":\"72 1\",\"pages\":\"1 - 23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software (TOMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3310410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们提出了一个Python框架pySDC,用于解决光谱延迟校正(SDC)方法的搭配问题,以及它们的时间并行变体PFASST,即空间和时间上的并行全近似方案。pySDC具有许多SDC和PFASST的实现,从简单的隐式时间步进到高阶隐式显式或多隐式分裂和多级SDC。该软件包附带了许多不同的预实现示例,并有七个教程来帮助新用户迈出第一步。时间并行可以通过模拟的方式实现,用于调试和原型设计,也可以使用MPI进行基准测试。代码被完整地记录下来,并使用持续集成进行了测试,包括以前出版物的大多数结果。在这里,我们通过两个不同的视角来描述代码的结构:用户的视角和开发人员的视角。第一个部分介绍前端、示例和教程,第二个部分用于描述底层实现和数据结构。我们将展示三个不同的示例,以突出显示pySDC的实现、功能和使用的各个方面。此外,还描述了与FEniCS框架和PETSc的耦合,后者包括MPI的空间并行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithm 997
In this article, we present the Python framework pySDC for solving collocation problems with spectral deferred correction (SDC) methods and their time-parallel variant PFASST, the parallel full approximation scheme in space and time. pySDC features many implementations of SDC and PFASST, from simple implicit timestepping to high-order implicit-explicit or multi-implicit splitting and multilevel SDCs. The software package comes with many different, preimplemented examples and has seven tutorials to help new users with their first steps. Time parallelism is implemented either in an emulated way for debugging and prototyping or using MPI for benchmarking. The code is fully documented and tested using continuous integration, including most results of previous publications. Here, we describe the structure of the code by taking two different perspectives: those of the user and those of the developer. The first sheds light on the front-end, the examples, and the tutorials, and the second is used to describe the underlying implementation and the data structures. We show three different examples to highlight various aspects of the implementation, the capabilities, and the usage of pySDC. In addition, couplings to the FEniCS framework and PETSc, the latter including spatial parallelism with MPI, are described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信