爱泼斯坦-巴尔病毒在鼻咽癌环境中的随机分布

4open Pub Date : 2019-01-01 DOI:10.1051/FOPEN/2019020
M. Cordeiro, J. E. García, V. González-López, Sergio L. M. londono
{"title":"爱泼斯坦-巴尔病毒在鼻咽癌环境中的随机分布","authors":"M. Cordeiro, J. E. García, V. González-López, Sergio L. M. londono","doi":"10.1051/FOPEN/2019020","DOIUrl":null,"url":null,"abstract":"We build a profile of the Epstein-Barr virus (EBV) by means of genomic sequences obtained from patients with nasopharyngeal carcinoma (NPC). We consider a set of sequences coming from the NCBI free source and we assume that this set is a collection of independent samples of stochastic processes related by an equivalence relation. Given a collection {(Xjt)t∈ℤ}pj=1 of p independent discrete time Markov processes with finite alphabet A and state space S, we state that the elements (i, s) and (j, r) in {1, 2,…, p} × S are equivalent if and only if they share the same transition probability for all the elements in the alphabet. The equivalence allows to reduce the number of parameters to be estimated in the model avoiding to delete states of S to achieve that reduction. Through the equivalence relationship, we build the global profile for all the EBV in NPC sequences, this model allows us to represent the underlying and common stochastic law of the set of sequences. The equivalence classes define an optimal partition of {1, 2,…, p} × S, and it is in relation to this partition that we define the profile of the set of genomic sequences.","PeriodicalId":6841,"journal":{"name":"4open","volume":"1998 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stochastic profile of Epstein-Barr virus in nasopharyngeal carcinoma settings\",\"authors\":\"M. Cordeiro, J. E. García, V. González-López, Sergio L. M. londono\",\"doi\":\"10.1051/FOPEN/2019020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We build a profile of the Epstein-Barr virus (EBV) by means of genomic sequences obtained from patients with nasopharyngeal carcinoma (NPC). We consider a set of sequences coming from the NCBI free source and we assume that this set is a collection of independent samples of stochastic processes related by an equivalence relation. Given a collection {(Xjt)t∈ℤ}pj=1 of p independent discrete time Markov processes with finite alphabet A and state space S, we state that the elements (i, s) and (j, r) in {1, 2,…, p} × S are equivalent if and only if they share the same transition probability for all the elements in the alphabet. The equivalence allows to reduce the number of parameters to be estimated in the model avoiding to delete states of S to achieve that reduction. Through the equivalence relationship, we build the global profile for all the EBV in NPC sequences, this model allows us to represent the underlying and common stochastic law of the set of sequences. The equivalence classes define an optimal partition of {1, 2,…, p} × S, and it is in relation to this partition that we define the profile of the set of genomic sequences.\",\"PeriodicalId\":6841,\"journal\":{\"name\":\"4open\",\"volume\":\"1998 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/FOPEN/2019020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/FOPEN/2019020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文利用从鼻咽癌(NPC)患者中获得的基因组序列建立了eb病毒(EBV)的基因图谱。我们考虑一组来自NCBI自由源的序列,并假设这组序列是由等价关系相关的随机过程的独立样本的集合。给定具有有限字母a和状态空间S的p个独立离散时间马尔可夫过程的集合{(Xjt)t∈0}pj=1,我们声明{1,2,…,p} × S中的元素(i, S)和(j, r)当且仅当它们在字母中所有元素具有相同的转移概率时是等价的。等效性允许减少模型中需要估计的参数数量,避免为了减少而删除S的状态。通过等价关系,我们建立了NPC序列中所有EBV的全局轮廓,该模型使我们能够表示序列集合的基本和共同的随机规律。等价类定义了{1,2,…,p} × S的最优划分,并根据该划分定义了基因组序列集的剖面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic profile of Epstein-Barr virus in nasopharyngeal carcinoma settings
We build a profile of the Epstein-Barr virus (EBV) by means of genomic sequences obtained from patients with nasopharyngeal carcinoma (NPC). We consider a set of sequences coming from the NCBI free source and we assume that this set is a collection of independent samples of stochastic processes related by an equivalence relation. Given a collection {(Xjt)t∈ℤ}pj=1 of p independent discrete time Markov processes with finite alphabet A and state space S, we state that the elements (i, s) and (j, r) in {1, 2,…, p} × S are equivalent if and only if they share the same transition probability for all the elements in the alphabet. The equivalence allows to reduce the number of parameters to be estimated in the model avoiding to delete states of S to achieve that reduction. Through the equivalence relationship, we build the global profile for all the EBV in NPC sequences, this model allows us to represent the underlying and common stochastic law of the set of sequences. The equivalence classes define an optimal partition of {1, 2,…, p} × S, and it is in relation to this partition that we define the profile of the set of genomic sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信