HW-CVD沉积了反向异质结太阳能电池的μc-Si:H

Y. Matsumoto, M. Ortega, V. Sanchez, F. Wunsch, J. Urbano
{"title":"HW-CVD沉积了反向异质结太阳能电池的μc-Si:H","authors":"Y. Matsumoto, M. Ortega, V. Sanchez, F. Wunsch, J. Urbano","doi":"10.1109/PVSC.2010.5614432","DOIUrl":null,"url":null,"abstract":"P-type-microcrystalline-silicon / n-type-crystalline-silicon hetero-junction solar cell has been prepared by means of hot-wire chemical vapor deposition (HW-CVD) technique. The solar cell structure was illuminated on the opposite side of the normally-formed heterojunction. With this inverted structure, the photovoltaic cell has the design potential to improve the light-incident surface-texturing with the possibility to avoid the use of transparent conducting oxide (TCO). Solar cells were fabricated on Czochralsky (CZ)-grown phosphorous-doped crystalline-silicon (c-Si) substrates within 0.5 to 1 ohm-cm. HW-CVD has employed for the deposition of a very thin intrinsic hydrogenated amorphous silicon (i-a-Si) as a buffer-layer as a heterojunction interface, and boron-doped hydrogenated microcrystalline silicon (p-μc-Si) on c-Si substrate. The tungsten catalyst temperature (Tfil) was settled to 1600 °C and 1950 °C for i-a-Si and p-μc-Si films, respectively. Silane (SiH4), hydrogen (H2) and diluted diborane (B2H6) gases were used for p-μc-Si at the substrate temperatures (Tsub) of 200 °C. The obtained I–V characteristics under simulated solar radiation at 100mW/cm2 are: Jsc =26.1 mA/cm2; Voc = 545 mV; Jm = 21.4 mA/cm2; Vm = 410 mV; FF = 61.7%, with total area efficiency of η= 8.8%. The solar cell has great potential to improve its conversion efficiency with proper surface passivation and antireflection coat.","PeriodicalId":6424,"journal":{"name":"2010 35th IEEE Photovoltaic Specialists Conference","volume":"72 1","pages":"001450-001455"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HW-CVD deposited μc-Si:H for the inverted heterojunction solar cell\",\"authors\":\"Y. Matsumoto, M. Ortega, V. Sanchez, F. Wunsch, J. Urbano\",\"doi\":\"10.1109/PVSC.2010.5614432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"P-type-microcrystalline-silicon / n-type-crystalline-silicon hetero-junction solar cell has been prepared by means of hot-wire chemical vapor deposition (HW-CVD) technique. The solar cell structure was illuminated on the opposite side of the normally-formed heterojunction. With this inverted structure, the photovoltaic cell has the design potential to improve the light-incident surface-texturing with the possibility to avoid the use of transparent conducting oxide (TCO). Solar cells were fabricated on Czochralsky (CZ)-grown phosphorous-doped crystalline-silicon (c-Si) substrates within 0.5 to 1 ohm-cm. HW-CVD has employed for the deposition of a very thin intrinsic hydrogenated amorphous silicon (i-a-Si) as a buffer-layer as a heterojunction interface, and boron-doped hydrogenated microcrystalline silicon (p-μc-Si) on c-Si substrate. The tungsten catalyst temperature (Tfil) was settled to 1600 °C and 1950 °C for i-a-Si and p-μc-Si films, respectively. Silane (SiH4), hydrogen (H2) and diluted diborane (B2H6) gases were used for p-μc-Si at the substrate temperatures (Tsub) of 200 °C. The obtained I–V characteristics under simulated solar radiation at 100mW/cm2 are: Jsc =26.1 mA/cm2; Voc = 545 mV; Jm = 21.4 mA/cm2; Vm = 410 mV; FF = 61.7%, with total area efficiency of η= 8.8%. The solar cell has great potential to improve its conversion efficiency with proper surface passivation and antireflection coat.\",\"PeriodicalId\":6424,\"journal\":{\"name\":\"2010 35th IEEE Photovoltaic Specialists Conference\",\"volume\":\"72 1\",\"pages\":\"001450-001455\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 35th IEEE Photovoltaic Specialists Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2010.5614432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 35th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2010.5614432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用热线化学气相沉积(HW-CVD)技术制备了p型微晶硅/ n型晶硅异质结太阳电池。在正常形成的异质结的另一侧照射太阳能电池结构。通过这种倒置结构,光伏电池具有改善光入射表面纹理的设计潜力,并有可能避免使用透明导电氧化物(TCO)。太阳能电池是在CZ生长的掺磷晶体硅(c-Si)衬底上制备的,衬底尺寸在0.5 ~ 1欧姆-厘米之间。本征氢化非晶硅(i-a-Si)作为缓冲层作为异质结界面,在c-Si衬底上制备了掺硼氢化微晶硅(p-μc-Si)。对于i-a-Si和p-μc-Si薄膜,钨催化剂温度(Tfil)分别稳定在1600℃和1950℃。p-μc-Si采用硅烷(SiH4)、氢气(H2)和稀释二硼烷(B2H6)气体,衬底温度(Tsub)为200℃。在100mW/cm2模拟太阳辐射下得到的I-V特性为:Jsc =26.1 mA/cm2;Voc = 545 mV;Jm = 21.4 mA/cm2;Vm = 410 mV;FF = 61.7%,总表面积效率η= 8.8%。通过适当的表面钝化和增透涂层,提高太阳能电池的转换效率具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HW-CVD deposited μc-Si:H for the inverted heterojunction solar cell
P-type-microcrystalline-silicon / n-type-crystalline-silicon hetero-junction solar cell has been prepared by means of hot-wire chemical vapor deposition (HW-CVD) technique. The solar cell structure was illuminated on the opposite side of the normally-formed heterojunction. With this inverted structure, the photovoltaic cell has the design potential to improve the light-incident surface-texturing with the possibility to avoid the use of transparent conducting oxide (TCO). Solar cells were fabricated on Czochralsky (CZ)-grown phosphorous-doped crystalline-silicon (c-Si) substrates within 0.5 to 1 ohm-cm. HW-CVD has employed for the deposition of a very thin intrinsic hydrogenated amorphous silicon (i-a-Si) as a buffer-layer as a heterojunction interface, and boron-doped hydrogenated microcrystalline silicon (p-μc-Si) on c-Si substrate. The tungsten catalyst temperature (Tfil) was settled to 1600 °C and 1950 °C for i-a-Si and p-μc-Si films, respectively. Silane (SiH4), hydrogen (H2) and diluted diborane (B2H6) gases were used for p-μc-Si at the substrate temperatures (Tsub) of 200 °C. The obtained I–V characteristics under simulated solar radiation at 100mW/cm2 are: Jsc =26.1 mA/cm2; Voc = 545 mV; Jm = 21.4 mA/cm2; Vm = 410 mV; FF = 61.7%, with total area efficiency of η= 8.8%. The solar cell has great potential to improve its conversion efficiency with proper surface passivation and antireflection coat.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信