数据管理原理研究方向(节选)

S. Abiteboul, M. Arenas, P. Barceló, Meghyn Bienvenu, Diego Calvanese, C. David, R. Hull, E. Hüllermeier, B. Kimelfeld, L. Libkin, W. Martens, T. Milo, Filip Murlak, F. Neven, Magdalena Ortiz, T. Schwentick, Julia Stoyanovich, Jianwen Su, Dan Suciu, V. Vianu, K. Yi
{"title":"数据管理原理研究方向(节选)","authors":"S. Abiteboul, M. Arenas, P. Barceló, Meghyn Bienvenu, Diego Calvanese, C. David, R. Hull, E. Hüllermeier, B. Kimelfeld, L. Libkin, W. Martens, T. Milo, Filip Murlak, F. Neven, Magdalena Ortiz, T. Schwentick, Julia Stoyanovich, Jianwen Su, Dan Suciu, V. Vianu, K. Yi","doi":"10.1145/3092931.3092933","DOIUrl":null,"url":null,"abstract":"In April 2016, a community of researchers working in the area of Principles of Data Management (PDM) joined in a workshop at the Dagstuhl Castle in Germany. The workshop was organized jointly by the Executive Committee of the ACM Symposium on Principles of Database Systems (PODS) and the Council of the International Conference on Database Theory (ICDT). The mission of the workshop was to identify and explore some of the most important research directions that have high relevance to society and to Computer Science today, and where the PDM community has the potential to make significant contributions. This article presents a summary of the report created by the workshop [4]. That report describes the family of research directions that the workshop focused on from three perspectives: potential practical relevance, results already obtained, and research questions that appear surmountable in the short and medium term. The report organizes the identified research challenges for PDM around seven core themes, namely Managing Data at Scale, Multi-model Data, Uncertain Information, Knowledge-enriched Data, Data Management and Machine Learning, Process and Data, and Ethics and Data Management. Since new challenges in PDM arise all the time, we note that this list of themes is not intended to be exclusive.","PeriodicalId":21740,"journal":{"name":"SIGMOD Rec.","volume":"1 1","pages":"5-17"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Research Directions for Principles of Data Management (Abridged)\",\"authors\":\"S. Abiteboul, M. Arenas, P. Barceló, Meghyn Bienvenu, Diego Calvanese, C. David, R. Hull, E. Hüllermeier, B. Kimelfeld, L. Libkin, W. Martens, T. Milo, Filip Murlak, F. Neven, Magdalena Ortiz, T. Schwentick, Julia Stoyanovich, Jianwen Su, Dan Suciu, V. Vianu, K. Yi\",\"doi\":\"10.1145/3092931.3092933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In April 2016, a community of researchers working in the area of Principles of Data Management (PDM) joined in a workshop at the Dagstuhl Castle in Germany. The workshop was organized jointly by the Executive Committee of the ACM Symposium on Principles of Database Systems (PODS) and the Council of the International Conference on Database Theory (ICDT). The mission of the workshop was to identify and explore some of the most important research directions that have high relevance to society and to Computer Science today, and where the PDM community has the potential to make significant contributions. This article presents a summary of the report created by the workshop [4]. That report describes the family of research directions that the workshop focused on from three perspectives: potential practical relevance, results already obtained, and research questions that appear surmountable in the short and medium term. The report organizes the identified research challenges for PDM around seven core themes, namely Managing Data at Scale, Multi-model Data, Uncertain Information, Knowledge-enriched Data, Data Management and Machine Learning, Process and Data, and Ethics and Data Management. Since new challenges in PDM arise all the time, we note that this list of themes is not intended to be exclusive.\",\"PeriodicalId\":21740,\"journal\":{\"name\":\"SIGMOD Rec.\",\"volume\":\"1 1\",\"pages\":\"5-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGMOD Rec.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3092931.3092933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGMOD Rec.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3092931.3092933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

2016年4月,一群研究数据管理原理(PDM)领域的研究人员参加了在德国达格斯图尔城堡举行的研讨会。该讲习班是由ACM数据库系统原理专题讨论会执行委员会和数据库理论国际会议理事会联合组织的。研讨会的任务是确定和探索一些与当今社会和计算机科学高度相关的最重要的研究方向,以及PDM社区有可能做出重大贡献的方向。本文呈现了研讨会[4]创建的报告摘要。该报告从三个角度描述了研讨会重点关注的研究方向:潜在的实际意义、已经取得的成果以及在短期和中期看来可以克服的研究问题。该报告围绕七个核心主题组织了PDM的研究挑战,即大规模管理数据,多模型数据,不确定信息,知识丰富的数据,数据管理和机器学习,过程和数据以及道德和数据管理。由于PDM中的新挑战一直在出现,我们注意到这个主题列表并不是排他性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research Directions for Principles of Data Management (Abridged)
In April 2016, a community of researchers working in the area of Principles of Data Management (PDM) joined in a workshop at the Dagstuhl Castle in Germany. The workshop was organized jointly by the Executive Committee of the ACM Symposium on Principles of Database Systems (PODS) and the Council of the International Conference on Database Theory (ICDT). The mission of the workshop was to identify and explore some of the most important research directions that have high relevance to society and to Computer Science today, and where the PDM community has the potential to make significant contributions. This article presents a summary of the report created by the workshop [4]. That report describes the family of research directions that the workshop focused on from three perspectives: potential practical relevance, results already obtained, and research questions that appear surmountable in the short and medium term. The report organizes the identified research challenges for PDM around seven core themes, namely Managing Data at Scale, Multi-model Data, Uncertain Information, Knowledge-enriched Data, Data Management and Machine Learning, Process and Data, and Ethics and Data Management. Since new challenges in PDM arise all the time, we note that this list of themes is not intended to be exclusive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信