{"title":"基于SVD的向量空间模型的最佳逼近","authors":"R. Hadi","doi":"10.23851/MJS.V28I2.509","DOIUrl":null,"url":null,"abstract":"A quick growth of internet technology makes it easy to assemble a huge volume of data as text document; e. g., journals, blogs, network pages, articles, email letters. In text mining application, increasing text space of datasets represent excessive task which makes it hard to pre-processing documents in efficient way to prepare it for text mining application like document clustering. The proposed system focuses on pre-processing document and reduction document space technique to prepare it for clustering technique. The mutual method for text mining problematic is vector space model (VSM), each term represent a features. Thus the proposed system create vector-space mod-el by using pre-processing method to reduce of trivial data from dataset. While the hug dimen-sionality of VSM is resolved by using low-rank SVD. Experiment results show that the proposed system give better document representation results about 10% from previous approach to prepare it for document clustering","PeriodicalId":7515,"journal":{"name":"Al-Mustansiriyah Journal of Sciences","volume":"21 1","pages":"143-149"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Best Approximate of Vector Space Model by Using SVD\",\"authors\":\"R. Hadi\",\"doi\":\"10.23851/MJS.V28I2.509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quick growth of internet technology makes it easy to assemble a huge volume of data as text document; e. g., journals, blogs, network pages, articles, email letters. In text mining application, increasing text space of datasets represent excessive task which makes it hard to pre-processing documents in efficient way to prepare it for text mining application like document clustering. The proposed system focuses on pre-processing document and reduction document space technique to prepare it for clustering technique. The mutual method for text mining problematic is vector space model (VSM), each term represent a features. Thus the proposed system create vector-space mod-el by using pre-processing method to reduce of trivial data from dataset. While the hug dimen-sionality of VSM is resolved by using low-rank SVD. Experiment results show that the proposed system give better document representation results about 10% from previous approach to prepare it for document clustering\",\"PeriodicalId\":7515,\"journal\":{\"name\":\"Al-Mustansiriyah Journal of Sciences\",\"volume\":\"21 1\",\"pages\":\"143-149\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Mustansiriyah Journal of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23851/MJS.V28I2.509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Mustansiriyah Journal of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23851/MJS.V28I2.509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Best Approximate of Vector Space Model by Using SVD
A quick growth of internet technology makes it easy to assemble a huge volume of data as text document; e. g., journals, blogs, network pages, articles, email letters. In text mining application, increasing text space of datasets represent excessive task which makes it hard to pre-processing documents in efficient way to prepare it for text mining application like document clustering. The proposed system focuses on pre-processing document and reduction document space technique to prepare it for clustering technique. The mutual method for text mining problematic is vector space model (VSM), each term represent a features. Thus the proposed system create vector-space mod-el by using pre-processing method to reduce of trivial data from dataset. While the hug dimen-sionality of VSM is resolved by using low-rank SVD. Experiment results show that the proposed system give better document representation results about 10% from previous approach to prepare it for document clustering