George B Richerson , Wengang Wang , Jyoti Tiwari , Stefania Risso Bradley
{"title":"延髓吻侧腹侧血清素能神经元的化学敏感性","authors":"George B Richerson , Wengang Wang , Jyoti Tiwari , Stefania Risso Bradley","doi":"10.1016/S0034-5687(01)00289-4","DOIUrl":null,"url":null,"abstract":"<div><p>The medullary raphé contains two subtypes of chemosensitive neuron: one that is stimulated by acidosis and another that is inhibited. Both types of neuron are putative chemoreceptors, proposed to act in opposite ways to modulate respiratory output and other pH sensitive brain functions. In this review, we will discuss the cellular properties of these chemosensitive raphé neurons when studied in vitro using brain slices and primary dissociated cell culture. Quantification of chemosensitivity of raphé neurons indicates that they are highly sensitive to small changes in extracellular pH (pH<sub>o</sub>) between 7.2 and 7.6. Stimulation by acidosis occurs only in the specific phenotypic subset of neurons within the raphé that are serotonergic. These serotonergic neurons also have other properties consistent with a specialized role in chemoreception. Homologous serotonergic neurons are present within the ventrolateral medulla (VLM), and may have contributed to localization of respiratory chemoreception to that region. Chemosensitivity of raphé neurons increases in the postnatal period in rats, in parallel with development of respiratory chemoreception in vivo. An abnormality of serotonergic neurons of the ventral medulla has been identified in victims of sudden infant death syndrome (SIDS). The cellular properties of serotonergic raphé neurons suggest that they play a role in the CNS response to hypercapnia, and that they may contribute to interactions between the sleep/wake cycle and respiratory control.</p></div>","PeriodicalId":20976,"journal":{"name":"Respiration physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0034-5687(01)00289-4","citationCount":"168","resultStr":"{\"title\":\"Chemosensitivity of serotonergic neurons in the rostral ventral medulla\",\"authors\":\"George B Richerson , Wengang Wang , Jyoti Tiwari , Stefania Risso Bradley\",\"doi\":\"10.1016/S0034-5687(01)00289-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The medullary raphé contains two subtypes of chemosensitive neuron: one that is stimulated by acidosis and another that is inhibited. Both types of neuron are putative chemoreceptors, proposed to act in opposite ways to modulate respiratory output and other pH sensitive brain functions. In this review, we will discuss the cellular properties of these chemosensitive raphé neurons when studied in vitro using brain slices and primary dissociated cell culture. Quantification of chemosensitivity of raphé neurons indicates that they are highly sensitive to small changes in extracellular pH (pH<sub>o</sub>) between 7.2 and 7.6. Stimulation by acidosis occurs only in the specific phenotypic subset of neurons within the raphé that are serotonergic. These serotonergic neurons also have other properties consistent with a specialized role in chemoreception. Homologous serotonergic neurons are present within the ventrolateral medulla (VLM), and may have contributed to localization of respiratory chemoreception to that region. Chemosensitivity of raphé neurons increases in the postnatal period in rats, in parallel with development of respiratory chemoreception in vivo. An abnormality of serotonergic neurons of the ventral medulla has been identified in victims of sudden infant death syndrome (SIDS). The cellular properties of serotonergic raphé neurons suggest that they play a role in the CNS response to hypercapnia, and that they may contribute to interactions between the sleep/wake cycle and respiratory control.</p></div>\",\"PeriodicalId\":20976,\"journal\":{\"name\":\"Respiration physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0034-5687(01)00289-4\",\"citationCount\":\"168\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respiration physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034568701002894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiration physiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034568701002894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chemosensitivity of serotonergic neurons in the rostral ventral medulla
The medullary raphé contains two subtypes of chemosensitive neuron: one that is stimulated by acidosis and another that is inhibited. Both types of neuron are putative chemoreceptors, proposed to act in opposite ways to modulate respiratory output and other pH sensitive brain functions. In this review, we will discuss the cellular properties of these chemosensitive raphé neurons when studied in vitro using brain slices and primary dissociated cell culture. Quantification of chemosensitivity of raphé neurons indicates that they are highly sensitive to small changes in extracellular pH (pHo) between 7.2 and 7.6. Stimulation by acidosis occurs only in the specific phenotypic subset of neurons within the raphé that are serotonergic. These serotonergic neurons also have other properties consistent with a specialized role in chemoreception. Homologous serotonergic neurons are present within the ventrolateral medulla (VLM), and may have contributed to localization of respiratory chemoreception to that region. Chemosensitivity of raphé neurons increases in the postnatal period in rats, in parallel with development of respiratory chemoreception in vivo. An abnormality of serotonergic neurons of the ventral medulla has been identified in victims of sudden infant death syndrome (SIDS). The cellular properties of serotonergic raphé neurons suggest that they play a role in the CNS response to hypercapnia, and that they may contribute to interactions between the sleep/wake cycle and respiratory control.