由车域覆盖

Eugene R. Rodemich
{"title":"由车域覆盖","authors":"Eugene R. Rodemich","doi":"10.1016/S0021-9800(70)80018-7","DOIUrl":null,"url":null,"abstract":"<div><p>It is shown that a 1-dense set in <em>V<sub>n</sub><sup>k</sup></em> must contain at least <em>n<sup>k−1</sup>/(k−1)</em> points. As a corollary, a conjecture of Golomb and Posner on error-distributing codes is proved. It is also shown that a (<em>k</em>−2)-dense set must contain at least <em>n</em><sup>2</sup>/(<em>k</em>−1) points. Equality can be attained if and only if <em>k</em>−1 divides <em>n</em> and there are <em>k</em>−2 orthogonal latin squares of order <em>n</em>/(<em>k</em>−1).</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"9 2","pages":"Pages 117-128"},"PeriodicalIF":0.0000,"publicationDate":"1970-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80018-7","citationCount":"23","resultStr":"{\"title\":\"Coverings by rook domains\",\"authors\":\"Eugene R. Rodemich\",\"doi\":\"10.1016/S0021-9800(70)80018-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is shown that a 1-dense set in <em>V<sub>n</sub><sup>k</sup></em> must contain at least <em>n<sup>k−1</sup>/(k−1)</em> points. As a corollary, a conjecture of Golomb and Posner on error-distributing codes is proved. It is also shown that a (<em>k</em>−2)-dense set must contain at least <em>n</em><sup>2</sup>/(<em>k</em>−1) points. Equality can be attained if and only if <em>k</em>−1 divides <em>n</em> and there are <em>k</em>−2 orthogonal latin squares of order <em>n</em>/(<em>k</em>−1).</p></div>\",\"PeriodicalId\":100765,\"journal\":{\"name\":\"Journal of Combinatorial Theory\",\"volume\":\"9 2\",\"pages\":\"Pages 117-128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80018-7\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021980070800187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

证明了在Vnk中一个1密集的集合必须包含至少nk−1/(k−1)个点。作为推论,证明了Golomb和Posner关于错误分布码的一个猜想。还证明了(k−2)密集集必须包含至少n2/(k−1)个点。当且仅当k−1能整除n且有k−2个n/(k−1)阶的正交拉丁方阵时,等式才能成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coverings by rook domains

It is shown that a 1-dense set in Vnk must contain at least nk−1/(k−1) points. As a corollary, a conjecture of Golomb and Posner on error-distributing codes is proved. It is also shown that a (k−2)-dense set must contain at least n2/(k−1) points. Equality can be attained if and only if k−1 divides n and there are k−2 orthogonal latin squares of order n/(k−1).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信