异步硬件的建模与分布式仿真

Georgios K. Theodoropoulos
{"title":"异步硬件的建模与分布式仿真","authors":"Georgios K. Theodoropoulos","doi":"10.1016/S0928-4869(00)00005-7","DOIUrl":null,"url":null,"abstract":"<div><p>Synchronous VLSI design is approaching a critical point, with clock distribution becoming an increasingly costly and complicated issue and power consumption rapidly emerging as a major concern. Hence, recently, there has been a resurgence of interest in asynchronous digital design techniques as they promise to liberate VLSI systems from clock skew problems, offer the potential for low power and high performance and encourage a modular design philosophy which makes incremental technological migration a much easier task. This activity has revealed a need for modelling and simulation techniques suitable for the asynchronous design style. Contributing to the quest for modelling and simulation techniques suitable for asynchronous design, and motivated by the increasing debate regarding the potential of CSP for this purpose, this paper investigates the suitability of occam, a CSP-based programming language, for the modelling and simulation of complex asynchronous systems. A generic modelling framework is introduced and issues arising from the parallel semantics of CSP/occam when the latter is employed to perform simulation are addressed.</p></div>","PeriodicalId":101162,"journal":{"name":"Simulation Practice and Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0928-4869(00)00005-7","citationCount":"8","resultStr":"{\"title\":\"Modelling and distributed simulation of asynchronous hardware\",\"authors\":\"Georgios K. Theodoropoulos\",\"doi\":\"10.1016/S0928-4869(00)00005-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Synchronous VLSI design is approaching a critical point, with clock distribution becoming an increasingly costly and complicated issue and power consumption rapidly emerging as a major concern. Hence, recently, there has been a resurgence of interest in asynchronous digital design techniques as they promise to liberate VLSI systems from clock skew problems, offer the potential for low power and high performance and encourage a modular design philosophy which makes incremental technological migration a much easier task. This activity has revealed a need for modelling and simulation techniques suitable for the asynchronous design style. Contributing to the quest for modelling and simulation techniques suitable for asynchronous design, and motivated by the increasing debate regarding the potential of CSP for this purpose, this paper investigates the suitability of occam, a CSP-based programming language, for the modelling and simulation of complex asynchronous systems. A generic modelling framework is introduced and issues arising from the parallel semantics of CSP/occam when the latter is employed to perform simulation are addressed.</p></div>\",\"PeriodicalId\":101162,\"journal\":{\"name\":\"Simulation Practice and Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0928-4869(00)00005-7\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation Practice and Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928486900000057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Practice and Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928486900000057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

同步VLSI设计正接近一个临界点,时钟分配变得越来越昂贵和复杂,功耗迅速成为一个主要问题。因此,最近,人们对异步数字设计技术的兴趣重新抬头,因为它们有望将VLSI系统从时钟倾斜问题中解放出来,提供低功耗和高性能的潜力,并鼓励模块化设计理念,使增量技术迁移变得更加容易。这一活动揭示了对适合异步设计风格的建模和仿真技术的需求。为了寻求适合异步设计的建模和仿真技术,并受到关于CSP为此目的潜力的日益激烈的辩论的推动,本文研究了occam(一种基于CSP的编程语言)用于复杂异步系统建模和仿真的适用性。介绍了一个通用的建模框架,并解决了CSP/occam在使用CSP/occam进行仿真时产生的并行语义问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling and distributed simulation of asynchronous hardware

Synchronous VLSI design is approaching a critical point, with clock distribution becoming an increasingly costly and complicated issue and power consumption rapidly emerging as a major concern. Hence, recently, there has been a resurgence of interest in asynchronous digital design techniques as they promise to liberate VLSI systems from clock skew problems, offer the potential for low power and high performance and encourage a modular design philosophy which makes incremental technological migration a much easier task. This activity has revealed a need for modelling and simulation techniques suitable for the asynchronous design style. Contributing to the quest for modelling and simulation techniques suitable for asynchronous design, and motivated by the increasing debate regarding the potential of CSP for this purpose, this paper investigates the suitability of occam, a CSP-based programming language, for the modelling and simulation of complex asynchronous systems. A generic modelling framework is introduced and issues arising from the parallel semantics of CSP/occam when the latter is employed to perform simulation are addressed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信