纤维增强砂浆的蠕变特性及其对减小收缩差应力的影响

Q3 Engineering
S. Sangadji, E. Safitri, M. Z. Arifin, S. Kristiawan
{"title":"纤维增强砂浆的蠕变特性及其对减小收缩差应力的影响","authors":"S. Sangadji, E. Safitri, M. Z. Arifin, S. Kristiawan","doi":"10.28991/cej-2023-09-08-014","DOIUrl":null,"url":null,"abstract":"This research aims to develop durable repair materials that can resist shrinkage cracking by exploring the role of creep in reducing shrinkage stress. In this regard, the creep effect can only be quantified if an accurate creep prediction model and theoretical analysis of the shrinkage stress in the patch repair system exist. For this purpose, the research was carried out in the following sequences: first, the research investigated the short-term creep of the patch repair materials containing accelerator and micro-synthetic fibers in the 0.00–0.12% volume fraction range. This short-term creep was measured on five-cylinder specimens (having a diameter of 75 mm and a height of 275 mm). Three specimens were used to determine the deformation of the repair material under unloading conditions, while those remaining were used to determine the total deformation under loading conditions. The amount of creep deformation was determined by taking away the unloaded (shrinkage) and instantaneous (elastic) deformations from the total deformation of the loaded specimens. Secondly, a modified prediction model of ACI 209R-08 is introduced to accurately capture the rate and magnitude of the observed creep of the repair materials. Finally, a formulated theoretical analysis of shrinkage stress in the patch repair system was proposed to examine how creep potentially reduces the repair material's cracking tendency. The results show that the asymptotic value of the creep curve is attained at an earlier age and that its magnitude is greater than that of most concrete. The modified ACI 209R-08 prediction model can closely estimate the repair materials' creep behavior. The best-fit line, residual values, and coefficient of error analyses confirm the modified model's prediction accuracy. The analysis of tensile stress development in the repair layer suggests that creep can reduce stress by up to 50%. With such a reduction, the repair material is expected to be durable in resisting shrinkage and cracking tendency. Doi: 10.28991/CEJ-2023-09-08-014 Full Text: PDF","PeriodicalId":53612,"journal":{"name":"Open Civil Engineering Journal","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Creep Behavior of Fiber Reinforced Mortars and Its Effect to Reduce the Differential Shrinkage Stress\",\"authors\":\"S. Sangadji, E. Safitri, M. Z. Arifin, S. Kristiawan\",\"doi\":\"10.28991/cej-2023-09-08-014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to develop durable repair materials that can resist shrinkage cracking by exploring the role of creep in reducing shrinkage stress. In this regard, the creep effect can only be quantified if an accurate creep prediction model and theoretical analysis of the shrinkage stress in the patch repair system exist. For this purpose, the research was carried out in the following sequences: first, the research investigated the short-term creep of the patch repair materials containing accelerator and micro-synthetic fibers in the 0.00–0.12% volume fraction range. This short-term creep was measured on five-cylinder specimens (having a diameter of 75 mm and a height of 275 mm). Three specimens were used to determine the deformation of the repair material under unloading conditions, while those remaining were used to determine the total deformation under loading conditions. The amount of creep deformation was determined by taking away the unloaded (shrinkage) and instantaneous (elastic) deformations from the total deformation of the loaded specimens. Secondly, a modified prediction model of ACI 209R-08 is introduced to accurately capture the rate and magnitude of the observed creep of the repair materials. Finally, a formulated theoretical analysis of shrinkage stress in the patch repair system was proposed to examine how creep potentially reduces the repair material's cracking tendency. The results show that the asymptotic value of the creep curve is attained at an earlier age and that its magnitude is greater than that of most concrete. The modified ACI 209R-08 prediction model can closely estimate the repair materials' creep behavior. The best-fit line, residual values, and coefficient of error analyses confirm the modified model's prediction accuracy. The analysis of tensile stress development in the repair layer suggests that creep can reduce stress by up to 50%. With such a reduction, the repair material is expected to be durable in resisting shrinkage and cracking tendency. Doi: 10.28991/CEJ-2023-09-08-014 Full Text: PDF\",\"PeriodicalId\":53612,\"journal\":{\"name\":\"Open Civil Engineering Journal\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Civil Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28991/cej-2023-09-08-014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/cej-2023-09-08-014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过探索蠕变在降低收缩应力中的作用,开发出抗收缩开裂的耐用修复材料。因此,只有建立了准确的蠕变预测模型和对修补体系收缩应力的理论分析,才能对蠕变效应进行量化。为此,本研究按以下顺序进行:首先,研究了含有促进剂和微合成纤维的补片修复材料在体积分数为0.00-0.12%范围内的短期蠕变。这种短期蠕变是在五圆柱体试样上测量的(直径为75毫米,高度为275毫米)。其中3个试件用于确定修复材料在卸载条件下的变形,其余试件用于确定加载条件下的总变形。蠕变量是通过从加载试件的总变形中除去卸载(收缩)和瞬时(弹性)变形来确定的。其次,引入改进的ACI 209R-08预测模型,准确地捕捉到修复材料蠕变的速率和幅度。最后,提出了补丁修补系统中收缩应力的公式理论分析,以研究蠕变如何潜在地降低修复材料的开裂倾向。结果表明,蠕变曲线的渐近值出现在较早的龄期,且其幅度大于大多数混凝土的渐近值。修正后的ACI 209R-08预测模型能较好地预测修复材料的蠕变行为。最佳拟合线、残差和误差系数分析证实了修正模型的预测精度。对修复层拉应力发展的分析表明,蠕变可以使应力降低高达50%。有了这样的降低,修复材料有望在抗收缩和开裂倾向方面持久耐用。Doi: 10.28991/CEJ-2023-09-08-014全文:PDF
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Creep Behavior of Fiber Reinforced Mortars and Its Effect to Reduce the Differential Shrinkage Stress
This research aims to develop durable repair materials that can resist shrinkage cracking by exploring the role of creep in reducing shrinkage stress. In this regard, the creep effect can only be quantified if an accurate creep prediction model and theoretical analysis of the shrinkage stress in the patch repair system exist. For this purpose, the research was carried out in the following sequences: first, the research investigated the short-term creep of the patch repair materials containing accelerator and micro-synthetic fibers in the 0.00–0.12% volume fraction range. This short-term creep was measured on five-cylinder specimens (having a diameter of 75 mm and a height of 275 mm). Three specimens were used to determine the deformation of the repair material under unloading conditions, while those remaining were used to determine the total deformation under loading conditions. The amount of creep deformation was determined by taking away the unloaded (shrinkage) and instantaneous (elastic) deformations from the total deformation of the loaded specimens. Secondly, a modified prediction model of ACI 209R-08 is introduced to accurately capture the rate and magnitude of the observed creep of the repair materials. Finally, a formulated theoretical analysis of shrinkage stress in the patch repair system was proposed to examine how creep potentially reduces the repair material's cracking tendency. The results show that the asymptotic value of the creep curve is attained at an earlier age and that its magnitude is greater than that of most concrete. The modified ACI 209R-08 prediction model can closely estimate the repair materials' creep behavior. The best-fit line, residual values, and coefficient of error analyses confirm the modified model's prediction accuracy. The analysis of tensile stress development in the repair layer suggests that creep can reduce stress by up to 50%. With such a reduction, the repair material is expected to be durable in resisting shrinkage and cracking tendency. Doi: 10.28991/CEJ-2023-09-08-014 Full Text: PDF
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Civil Engineering Journal
Open Civil Engineering Journal Engineering-Civil and Structural Engineering
CiteScore
1.90
自引率
0.00%
发文量
17
期刊介绍: The Open Civil Engineering Journal is an Open Access online journal which publishes research, reviews/mini-reviews, letter articles and guest edited single topic issues in all areas of civil engineering. The Open Civil Engineering Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in civil engineering. The topics covered in the journal include (but not limited to) concrete structures, construction materials, structural mechanics, soil mechanics, foundation engineering, offshore geotechnics, water resources, hydraulics, horology, coastal engineering, river engineering, ocean modeling, fluid-solid-structure interactions, offshore engineering, marine structures, constructional management and other civil engineering relevant areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信