多步直线校正CLIC轨迹

E. D'amico, G. Guignard
{"title":"多步直线校正CLIC轨迹","authors":"E. D'amico, G. Guignard","doi":"10.1109/PAC.1999.792316","DOIUrl":null,"url":null,"abstract":"In the CLIC main linac it is very important to minimise the trajectory excursion and consequently the emittance dilution in order to obtain the required luminosity. Several algorithms have been proposed and lately the ballistic method has proved to be very effective. The trajectory correction method described hereafter retains the main advantages of the latter while adding some interesting features. It is based on the separation of the unknown variables like the quadrupole misalignments, the offset and slope of the injection straight line and the misalignments of the beam position monitors (BPM). This is achieved by referring the trajectory relatively to the injection line and not to the average pre-alignment line and by using two trajectories each corresponding to slightly different quadrupole strengths. A reference straight line is then derived onto which the beam is bent by a kick obtained by moving the first quadrupole. The other quadrupoles are then aligned on that line. The quality of the correction depends mainly on the BPM's and micro-movers' resolution and on the stability of the quadrupole strengths. Simulation statistics show that the beam offset from the center-of the quadrupoles is typically 1.5 /spl mu/m r.m.s.","PeriodicalId":20453,"journal":{"name":"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)","volume":"76 1","pages":"3399-3401 vol.5"},"PeriodicalIF":0.0000,"publicationDate":"1999-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-step lining-up correction of the CLIC trajectory\",\"authors\":\"E. D'amico, G. Guignard\",\"doi\":\"10.1109/PAC.1999.792316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the CLIC main linac it is very important to minimise the trajectory excursion and consequently the emittance dilution in order to obtain the required luminosity. Several algorithms have been proposed and lately the ballistic method has proved to be very effective. The trajectory correction method described hereafter retains the main advantages of the latter while adding some interesting features. It is based on the separation of the unknown variables like the quadrupole misalignments, the offset and slope of the injection straight line and the misalignments of the beam position monitors (BPM). This is achieved by referring the trajectory relatively to the injection line and not to the average pre-alignment line and by using two trajectories each corresponding to slightly different quadrupole strengths. A reference straight line is then derived onto which the beam is bent by a kick obtained by moving the first quadrupole. The other quadrupoles are then aligned on that line. The quality of the correction depends mainly on the BPM's and micro-movers' resolution and on the stability of the quadrupole strengths. Simulation statistics show that the beam offset from the center-of the quadrupoles is typically 1.5 /spl mu/m r.m.s.\",\"PeriodicalId\":20453,\"journal\":{\"name\":\"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)\",\"volume\":\"76 1\",\"pages\":\"3399-3401 vol.5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAC.1999.792316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAC.1999.792316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在CLIC主直线中,为了获得所需的亮度,最小化轨迹偏移和因此产生的发射度稀释是非常重要的。已经提出了几种算法,最近证明了弹道法是非常有效的。本文描述的轨迹修正方法保留了后者的主要优点,同时增加了一些有趣的特征。它是基于分离未知变量,如四极柱偏差、注入直线的偏移量和斜率以及波束位置监视器(BPM)的偏差。这是通过将轨迹相对于注入线而不是平均预对准线来实现的,并且通过使用两个轨迹,每个轨迹对应略有不同的四极杆强度。然后推导出一条参考直线,通过移动第一个四极杆获得的踢腿使光束弯曲。其他四极杆则在这条线上对齐。校正的质量主要取决于BPM和微动器的分辨率以及四极杆强度的稳定性。仿真统计表明,光束与四极中心的偏移量通常为1.5 /spl mu/m r.m.s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-step lining-up correction of the CLIC trajectory
In the CLIC main linac it is very important to minimise the trajectory excursion and consequently the emittance dilution in order to obtain the required luminosity. Several algorithms have been proposed and lately the ballistic method has proved to be very effective. The trajectory correction method described hereafter retains the main advantages of the latter while adding some interesting features. It is based on the separation of the unknown variables like the quadrupole misalignments, the offset and slope of the injection straight line and the misalignments of the beam position monitors (BPM). This is achieved by referring the trajectory relatively to the injection line and not to the average pre-alignment line and by using two trajectories each corresponding to slightly different quadrupole strengths. A reference straight line is then derived onto which the beam is bent by a kick obtained by moving the first quadrupole. The other quadrupoles are then aligned on that line. The quality of the correction depends mainly on the BPM's and micro-movers' resolution and on the stability of the quadrupole strengths. Simulation statistics show that the beam offset from the center-of the quadrupoles is typically 1.5 /spl mu/m r.m.s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信