Cruncher:用于基于位置的服务的分布式内存处理

A. S. Abdelhamid, Mingjie Tang, Ahmed M. Aly, Ahmed R. Mahmood, Thamir M. Qadah, Walid G. Aref, Saleh M. Basalamah
{"title":"Cruncher:用于基于位置的服务的分布式内存处理","authors":"A. S. Abdelhamid, Mingjie Tang, Ahmed M. Aly, Ahmed R. Mahmood, Thamir M. Qadah, Walid G. Aref, Saleh M. Basalamah","doi":"10.1109/ICDE.2016.7498356","DOIUrl":null,"url":null,"abstract":"Advances in location-based services (LBS) demand high-throughput processing of both static and streaming data. Recently, many systems have been introduced to support distributed main-memory processing to maximize the query throughput. However, these systems are not optimized for spatial data processing. In this demonstration, we showcase Cruncher, a distributed main-memory spatial data warehouse and streaming system. Cruncher extends Spark with adaptive query processing techniques for spatial data. Cruncher uses dynamic batch processing to distribute the queries and the data streams over commodity hardware according to an adaptive partitioning scheme. The batching technique also groups and orders the overlapping spatial queries to enable inter-query optimization. Both the data streams and the offline data share the same partitioning strategy that allows for data co-locality optimization. Furthermore, Cruncher uses an adaptive caching strategy to maintain the frequently-used location data in main memory. Cruncher maintains operational statistics to optimize query processing, data partitioning, and caching at runtime. We demonstrate two LBS applications over Cruncher using real datasets from OpenStreetMap and two synthetic data streams. We demonstrate that Cruncher achieves order(s) of magnitude throughput improvement over Spark when processing spatial data.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"14 1","pages":"1406-1409"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Cruncher: Distributed in-memory processing for location-based services\",\"authors\":\"A. S. Abdelhamid, Mingjie Tang, Ahmed M. Aly, Ahmed R. Mahmood, Thamir M. Qadah, Walid G. Aref, Saleh M. Basalamah\",\"doi\":\"10.1109/ICDE.2016.7498356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in location-based services (LBS) demand high-throughput processing of both static and streaming data. Recently, many systems have been introduced to support distributed main-memory processing to maximize the query throughput. However, these systems are not optimized for spatial data processing. In this demonstration, we showcase Cruncher, a distributed main-memory spatial data warehouse and streaming system. Cruncher extends Spark with adaptive query processing techniques for spatial data. Cruncher uses dynamic batch processing to distribute the queries and the data streams over commodity hardware according to an adaptive partitioning scheme. The batching technique also groups and orders the overlapping spatial queries to enable inter-query optimization. Both the data streams and the offline data share the same partitioning strategy that allows for data co-locality optimization. Furthermore, Cruncher uses an adaptive caching strategy to maintain the frequently-used location data in main memory. Cruncher maintains operational statistics to optimize query processing, data partitioning, and caching at runtime. We demonstrate two LBS applications over Cruncher using real datasets from OpenStreetMap and two synthetic data streams. We demonstrate that Cruncher achieves order(s) of magnitude throughput improvement over Spark when processing spatial data.\",\"PeriodicalId\":6883,\"journal\":{\"name\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"volume\":\"14 1\",\"pages\":\"1406-1409\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2016.7498356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

基于位置的服务(LBS)的发展要求静态和流数据的高吞吐量处理。最近,已经引入了许多支持分布式主存处理的系统,以最大限度地提高查询吞吐量。然而,这些系统并没有优化空间数据处理。在这个演示中,我们展示了Cruncher,一个分布式主存空间数据仓库和流系统。Cruncher扩展了Spark对空间数据的自适应查询处理技术。Cruncher根据自适应分区方案,使用动态批处理将查询和数据流分布在商品硬件上。批处理技术还对重叠的空间查询进行分组和排序,以实现查询间优化。数据流和脱机数据共享相同的分区策略,从而支持数据共局部性优化。此外,Cruncher使用自适应缓存策略在主存中维护频繁使用的位置数据。Cruncher维护运行统计信息,以优化查询处理、数据分区和运行时缓存。我们使用来自OpenStreetMap的真实数据集和两个合成数据流在Cruncher上演示了两个LBS应用程序。我们证明了Cruncher在处理空间数据时比Spark实现了数量级的吞吐量改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cruncher: Distributed in-memory processing for location-based services
Advances in location-based services (LBS) demand high-throughput processing of both static and streaming data. Recently, many systems have been introduced to support distributed main-memory processing to maximize the query throughput. However, these systems are not optimized for spatial data processing. In this demonstration, we showcase Cruncher, a distributed main-memory spatial data warehouse and streaming system. Cruncher extends Spark with adaptive query processing techniques for spatial data. Cruncher uses dynamic batch processing to distribute the queries and the data streams over commodity hardware according to an adaptive partitioning scheme. The batching technique also groups and orders the overlapping spatial queries to enable inter-query optimization. Both the data streams and the offline data share the same partitioning strategy that allows for data co-locality optimization. Furthermore, Cruncher uses an adaptive caching strategy to maintain the frequently-used location data in main memory. Cruncher maintains operational statistics to optimize query processing, data partitioning, and caching at runtime. We demonstrate two LBS applications over Cruncher using real datasets from OpenStreetMap and two synthetic data streams. We demonstrate that Cruncher achieves order(s) of magnitude throughput improvement over Spark when processing spatial data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信