创新轨迹的事件分析:理解创业成功的投入和结果

IF 0.7 Q3 MULTIDISCIPLINARY SCIENCES
C. S. Dempwolf, B. Shneiderman
{"title":"创新轨迹的事件分析:理解创业成功的投入和结果","authors":"C. S. Dempwolf, B. Shneiderman","doi":"10.21300/19.1.2017.397","DOIUrl":null,"url":null,"abstract":"New analysis tools are expanding the options for innovation researchers. While previous researchers often speculated on the relationship between inputs, such as patents or funding, and outcomes such as product releases or IPOs, new software tools enable researchers to analyze innovation event data more efficiently. Tools such as EventFlow make it possible to rapidly scan visual displays, algorithmically search for patterns, and study an aggregated view that shows common and rare patterns. This paper presents initial examples of how event analytic software tools such as EventFlow could be applied to innovation research, using data from 34,331 drugs or medical devices.","PeriodicalId":44009,"journal":{"name":"Technology and Innovation","volume":"13 1","pages":"397-413"},"PeriodicalIF":0.7000,"publicationDate":"2017-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Event Analytics for Innovation Trajectories: Understanding Inputs and Outcomes for Entrepreneurial Success\",\"authors\":\"C. S. Dempwolf, B. Shneiderman\",\"doi\":\"10.21300/19.1.2017.397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New analysis tools are expanding the options for innovation researchers. While previous researchers often speculated on the relationship between inputs, such as patents or funding, and outcomes such as product releases or IPOs, new software tools enable researchers to analyze innovation event data more efficiently. Tools such as EventFlow make it possible to rapidly scan visual displays, algorithmically search for patterns, and study an aggregated view that shows common and rare patterns. This paper presents initial examples of how event analytic software tools such as EventFlow could be applied to innovation research, using data from 34,331 drugs or medical devices.\",\"PeriodicalId\":44009,\"journal\":{\"name\":\"Technology and Innovation\",\"volume\":\"13 1\",\"pages\":\"397-413\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology and Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21300/19.1.2017.397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21300/19.1.2017.397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

新的分析工具为创新研究人员提供了更多的选择。虽然以前的研究人员经常推测投入(如专利或资金)与产品发布或首次公开募股(ipo)等结果之间的关系,但新的软件工具使研究人员能够更有效地分析创新事件数据。像EventFlow这样的工具使快速扫描可视化显示、算法搜索模式以及研究显示常见和罕见模式的聚合视图成为可能。本文介绍了事件分析软件工具(如EventFlow)如何应用于创新研究的初步示例,使用了来自34,331种药物或医疗设备的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event Analytics for Innovation Trajectories: Understanding Inputs and Outcomes for Entrepreneurial Success
New analysis tools are expanding the options for innovation researchers. While previous researchers often speculated on the relationship between inputs, such as patents or funding, and outcomes such as product releases or IPOs, new software tools enable researchers to analyze innovation event data more efficiently. Tools such as EventFlow make it possible to rapidly scan visual displays, algorithmically search for patterns, and study an aggregated view that shows common and rare patterns. This paper presents initial examples of how event analytic software tools such as EventFlow could be applied to innovation research, using data from 34,331 drugs or medical devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Technology and Innovation
Technology and Innovation MULTIDISCIPLINARY SCIENCES-
自引率
20.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信