{"title":"一种用于微型风能收集的冲击式压电系统电路设计","authors":"Nan Chen, T. Wei, D. Ha","doi":"10.1109/ISIE.2017.8001376","DOIUrl":null,"url":null,"abstract":"In this paper, a power management circuit with sleep mode for impact-type piezoelectric micro-wind energy harvesting system was proposed. Based on the analysis of the output characteristics of impact-type piezoelectric energy harvester, a new resistive matching impedance strategy was proposed to obtain maximum power. Besides, a low-power oscillator was presented to realize sectionalized frequencies. Finally, experimental results show that the controller for sectionalized matching impedance consumes 9.9% of the harvested power when the input average power is 0.9mW, and only 3.7% when the input average power is 2.1mW. The efficiency of the proposed sectionalized matching impedance energy harvesting circuit is around 76 %, which is increased by 59% and 22% at the strike frequency of 0.5Hz, as compared with the constant resistive matching circuit and with the constant resistive matching circuit having sleep mode, respectively.","PeriodicalId":6597,"journal":{"name":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","volume":"16 1","pages":"964-969"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Circuit design for an impact-type piezoelectric system for micro-wind energy harvesting\",\"authors\":\"Nan Chen, T. Wei, D. Ha\",\"doi\":\"10.1109/ISIE.2017.8001376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a power management circuit with sleep mode for impact-type piezoelectric micro-wind energy harvesting system was proposed. Based on the analysis of the output characteristics of impact-type piezoelectric energy harvester, a new resistive matching impedance strategy was proposed to obtain maximum power. Besides, a low-power oscillator was presented to realize sectionalized frequencies. Finally, experimental results show that the controller for sectionalized matching impedance consumes 9.9% of the harvested power when the input average power is 0.9mW, and only 3.7% when the input average power is 2.1mW. The efficiency of the proposed sectionalized matching impedance energy harvesting circuit is around 76 %, which is increased by 59% and 22% at the strike frequency of 0.5Hz, as compared with the constant resistive matching circuit and with the constant resistive matching circuit having sleep mode, respectively.\",\"PeriodicalId\":6597,\"journal\":{\"name\":\"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)\",\"volume\":\"16 1\",\"pages\":\"964-969\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.2017.8001376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2017.8001376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Circuit design for an impact-type piezoelectric system for micro-wind energy harvesting
In this paper, a power management circuit with sleep mode for impact-type piezoelectric micro-wind energy harvesting system was proposed. Based on the analysis of the output characteristics of impact-type piezoelectric energy harvester, a new resistive matching impedance strategy was proposed to obtain maximum power. Besides, a low-power oscillator was presented to realize sectionalized frequencies. Finally, experimental results show that the controller for sectionalized matching impedance consumes 9.9% of the harvested power when the input average power is 0.9mW, and only 3.7% when the input average power is 2.1mW. The efficiency of the proposed sectionalized matching impedance energy harvesting circuit is around 76 %, which is increased by 59% and 22% at the strike frequency of 0.5Hz, as compared with the constant resistive matching circuit and with the constant resistive matching circuit having sleep mode, respectively.