基于集合的时间序列相似度搜索

Jinglin Peng, Hongzhi Wang, Jianzhong Li, Hong Gao
{"title":"基于集合的时间序列相似度搜索","authors":"Jinglin Peng, Hongzhi Wang, Jianzhong Li, Hong Gao","doi":"10.1145/2882903.2882963","DOIUrl":null,"url":null,"abstract":"A fundamental problem of time series is k nearest neighbor (k-NN) query processing. However, existing methods are not fast enough for large dataset. In this paper, we propose a novel approach, STS3, to process k-NN queries by transforming time series to sets and measure the similarity under Jaccard metric. Our approach is more accurate than Dynamic Time Warping(DTW) in our suitable scenarios and it is faster than most of the existing methods, due to the efficient similarity search for sets. Besides, we also developed an index, a pruning and an approximation technique to improve the k-NN query procedure. As shown in the experimental results, all of them could accelerate the query processing effectively.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Set-based Similarity Search for Time Series\",\"authors\":\"Jinglin Peng, Hongzhi Wang, Jianzhong Li, Hong Gao\",\"doi\":\"10.1145/2882903.2882963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fundamental problem of time series is k nearest neighbor (k-NN) query processing. However, existing methods are not fast enough for large dataset. In this paper, we propose a novel approach, STS3, to process k-NN queries by transforming time series to sets and measure the similarity under Jaccard metric. Our approach is more accurate than Dynamic Time Warping(DTW) in our suitable scenarios and it is faster than most of the existing methods, due to the efficient similarity search for sets. Besides, we also developed an index, a pruning and an approximation technique to improve the k-NN query procedure. As shown in the experimental results, all of them could accelerate the query processing effectively.\",\"PeriodicalId\":20483,\"journal\":{\"name\":\"Proceedings of the 2016 International Conference on Management of Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2882903.2882963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2882963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

时间序列的一个基本问题是k近邻(k- nn)查询处理。然而,现有的方法对于大数据集来说速度不够快。在本文中,我们提出了一种新的方法,STS3,通过将时间序列转换为集合来处理k-NN查询,并在Jaccard度量下测量相似性。在合适的场景下,我们的方法比动态时间扭曲(DTW)更准确,并且由于对集合的有效相似性搜索,它比大多数现有方法更快。此外,我们还开发了索引、剪枝和近似技术来改进k-NN查询过程。实验结果表明,它们都能有效地加快查询处理速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Set-based Similarity Search for Time Series
A fundamental problem of time series is k nearest neighbor (k-NN) query processing. However, existing methods are not fast enough for large dataset. In this paper, we propose a novel approach, STS3, to process k-NN queries by transforming time series to sets and measure the similarity under Jaccard metric. Our approach is more accurate than Dynamic Time Warping(DTW) in our suitable scenarios and it is faster than most of the existing methods, due to the efficient similarity search for sets. Besides, we also developed an index, a pruning and an approximation technique to improve the k-NN query procedure. As shown in the experimental results, all of them could accelerate the query processing effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信