熔体冷却速率对Al - Ge合金组织和热性能的影响

O. Gusakova, Yuliya M. Shulya, H. Skibinskaya, V. Ankudinov
{"title":"熔体冷却速率对Al - Ge合金组织和热性能的影响","authors":"O. Gusakova, Yuliya M. Shulya, H. Skibinskaya, V. Ankudinov","doi":"10.33581/2520-2243-2020-2-70-77","DOIUrl":null,"url":null,"abstract":"The paper presents the results of comparing the microstructure of alloys of the Al – Ge system of eutectic and near- eutectic compositions synthesized at melt cooling rates of 102 and 105 K/s. It was shown by scanning electron microscopy that at a cooling rate of 102 K/s, crystallization starts with grain growth of the excess component and ends with a eutectic reaction. The microstructure of bulk samples is characterized by large inclusions of aluminum and germanium and heterogeneity of composition at sample cross section. The size reduction of phase particles of alloys of the Al – Ge system of eutectic and near-eutectic compositions is achieved using high-speed solidification. It is shown that the cooling rate of the melt increase causes size reduction of phase particles by 2–3 orders. The layering of the microstructure of the cross section of rapidly solidified foils was also revealed, and a mechanism for its formation was proposed taking into account changes in the solidification conditions over the thickness of the foil. Using differential scanning calorimetry, it was shown that an increase in the cooling rate provides a narrowing of the melting temperature range and an increase in the melting rate.","PeriodicalId":17264,"journal":{"name":"Journal of the Belarusian State University. Physics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of melt cooling rate on the microstructure and thermal properties of Al – Ge alloy\",\"authors\":\"O. Gusakova, Yuliya M. Shulya, H. Skibinskaya, V. Ankudinov\",\"doi\":\"10.33581/2520-2243-2020-2-70-77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the results of comparing the microstructure of alloys of the Al – Ge system of eutectic and near- eutectic compositions synthesized at melt cooling rates of 102 and 105 K/s. It was shown by scanning electron microscopy that at a cooling rate of 102 K/s, crystallization starts with grain growth of the excess component and ends with a eutectic reaction. The microstructure of bulk samples is characterized by large inclusions of aluminum and germanium and heterogeneity of composition at sample cross section. The size reduction of phase particles of alloys of the Al – Ge system of eutectic and near-eutectic compositions is achieved using high-speed solidification. It is shown that the cooling rate of the melt increase causes size reduction of phase particles by 2–3 orders. The layering of the microstructure of the cross section of rapidly solidified foils was also revealed, and a mechanism for its formation was proposed taking into account changes in the solidification conditions over the thickness of the foil. Using differential scanning calorimetry, it was shown that an increase in the cooling rate provides a narrowing of the melting temperature range and an increase in the melting rate.\",\"PeriodicalId\":17264,\"journal\":{\"name\":\"Journal of the Belarusian State University. Physics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Belarusian State University. Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33581/2520-2243-2020-2-70-77\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Belarusian State University. Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/2520-2243-2020-2-70-77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了在熔体冷却速度为102和105 K/s时合成的共晶和近共晶Al - Ge系合金的显微组织的比较结果。扫描电镜结果表明,在102 K/s的冷却速率下,结晶开始于过量组分的晶粒生长,结束于共晶反应。样品的微观结构表现为大量的铝和锗夹杂物以及样品截面上成分的不均匀性。高速凝固可使共晶和近共晶Al - Ge系合金的相颗粒减小。结果表明,熔体增加的冷却速度使相颗粒的尺寸减小了2 ~ 3个数量级。揭示了快速凝固箔横截面组织的分层现象,并提出了考虑凝固条件随箔厚度变化的分层现象形成机理。差示扫描量热法表明,冷却速度的增加缩小了熔化温度范围,提高了熔化速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of melt cooling rate on the microstructure and thermal properties of Al – Ge alloy
The paper presents the results of comparing the microstructure of alloys of the Al – Ge system of eutectic and near- eutectic compositions synthesized at melt cooling rates of 102 and 105 K/s. It was shown by scanning electron microscopy that at a cooling rate of 102 K/s, crystallization starts with grain growth of the excess component and ends with a eutectic reaction. The microstructure of bulk samples is characterized by large inclusions of aluminum and germanium and heterogeneity of composition at sample cross section. The size reduction of phase particles of alloys of the Al – Ge system of eutectic and near-eutectic compositions is achieved using high-speed solidification. It is shown that the cooling rate of the melt increase causes size reduction of phase particles by 2–3 orders. The layering of the microstructure of the cross section of rapidly solidified foils was also revealed, and a mechanism for its formation was proposed taking into account changes in the solidification conditions over the thickness of the foil. Using differential scanning calorimetry, it was shown that an increase in the cooling rate provides a narrowing of the melting temperature range and an increase in the melting rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信