加厚茶树精油的电纺丝聚(α -己内酯)纤维垫在伤口敷料中的研究:形态、释药及体外评价

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Cem Resat Ustundag, M. Piskin
{"title":"加厚茶树精油的电纺丝聚(α -己内酯)纤维垫在伤口敷料中的研究:形态、释药及体外评价","authors":"Cem Resat Ustundag, M. Piskin","doi":"10.1080/10667857.2023.2223018","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, Calophyllum inophyllum (CIO) loaded Poly (ε-caprolactone) (PCL) electrospun fibre mats were produced for potential wound healing applications. Physiochemical evaluation and in vitro characterisation of produced mats were evaluated. Average fibre diameters of the mats were determined as 0.9 ± 0.3 μm, 1.2 ± 0.2 μm, 1.3 ± 0.2 μm, and 1.5 ± 0.1 μm for PCL, PCL/CIO−2.5, PCL/CIO−5 and PCL/CIO−7.5, respectively. The contact angle values of the fibre mats were decreased up to 30 ± 5 (°) compared to oil-free PCL fibre mat, indicating improved surface wettability. The incorporation of CIO into fibre mats led to a two-fold increase in the antibacterial activity, as compared to the fibre mats composed of PCL. In vitro cytotoxicity evaluation indicated that all the fibre mats had increased cell viability compared to the control. The findings suggest that CIO-loaded PCL electrospun fibre mats have potential for use in tissue engineering applications.","PeriodicalId":18270,"journal":{"name":"Materials Technology","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of electrospun poly (ε-caprolactone) fiber mats loaded with Calophyllum inophyllum essential oil for wound dressing applications: Morphology, drug release and in vitro evaluation\",\"authors\":\"Cem Resat Ustundag, M. Piskin\",\"doi\":\"10.1080/10667857.2023.2223018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this study, Calophyllum inophyllum (CIO) loaded Poly (ε-caprolactone) (PCL) electrospun fibre mats were produced for potential wound healing applications. Physiochemical evaluation and in vitro characterisation of produced mats were evaluated. Average fibre diameters of the mats were determined as 0.9 ± 0.3 μm, 1.2 ± 0.2 μm, 1.3 ± 0.2 μm, and 1.5 ± 0.1 μm for PCL, PCL/CIO−2.5, PCL/CIO−5 and PCL/CIO−7.5, respectively. The contact angle values of the fibre mats were decreased up to 30 ± 5 (°) compared to oil-free PCL fibre mat, indicating improved surface wettability. The incorporation of CIO into fibre mats led to a two-fold increase in the antibacterial activity, as compared to the fibre mats composed of PCL. In vitro cytotoxicity evaluation indicated that all the fibre mats had increased cell viability compared to the control. The findings suggest that CIO-loaded PCL electrospun fibre mats have potential for use in tissue engineering applications.\",\"PeriodicalId\":18270,\"journal\":{\"name\":\"Materials Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/10667857.2023.2223018\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/10667857.2023.2223018","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of electrospun poly (ε-caprolactone) fiber mats loaded with Calophyllum inophyllum essential oil for wound dressing applications: Morphology, drug release and in vitro evaluation
ABSTRACT In this study, Calophyllum inophyllum (CIO) loaded Poly (ε-caprolactone) (PCL) electrospun fibre mats were produced for potential wound healing applications. Physiochemical evaluation and in vitro characterisation of produced mats were evaluated. Average fibre diameters of the mats were determined as 0.9 ± 0.3 μm, 1.2 ± 0.2 μm, 1.3 ± 0.2 μm, and 1.5 ± 0.1 μm for PCL, PCL/CIO−2.5, PCL/CIO−5 and PCL/CIO−7.5, respectively. The contact angle values of the fibre mats were decreased up to 30 ± 5 (°) compared to oil-free PCL fibre mat, indicating improved surface wettability. The incorporation of CIO into fibre mats led to a two-fold increase in the antibacterial activity, as compared to the fibre mats composed of PCL. In vitro cytotoxicity evaluation indicated that all the fibre mats had increased cell viability compared to the control. The findings suggest that CIO-loaded PCL electrospun fibre mats have potential for use in tissue engineering applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Technology
Materials Technology 工程技术-材料科学:综合
CiteScore
6.00
自引率
9.70%
发文量
105
审稿时长
8.7 months
期刊介绍: Materials Technology: Advanced Performance Materials provides an international medium for the communication of progress in the field of functional materials (advanced materials in which composition, structure and surface are functionalised to confer specific, applications-oriented properties). The focus is on materials for biomedical, electronic, photonic and energy applications. Contributions should address the physical, chemical, or engineering sciences that underpin the design and application of these materials. The scientific and engineering aspects may include processing and structural characterisation from the micro- to nanoscale to achieve specific functionality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信