单板低轮廓频率选择面设计

Q2 Social Sciences
A. Lalbakhsh, K. Esselle, S. Smith
{"title":"单板低轮廓频率选择面设计","authors":"A. Lalbakhsh, K. Esselle, S. Smith","doi":"10.1109/PIERS-FALL.2017.8293531","DOIUrl":null,"url":null,"abstract":"This paper presents an extremely thin bandpass frequency selective surface (FSS) operating in X-band. The center frequency of the FSS is 11GHz and its 3-dB fractional bandwidth is 19%. The FSS is composed of conductive circular patches on one side and inductive square rings on the other side of a thin substrate. The diameter of the circular patches, the width of the square rings and the thickness of the substrate are determined using an iterative optimization technique to make the structure resonate at the required frequency. A multi-objective fitness function is used to monitor the scattering parameters to achieve the minimum insertion loss at the center frequency and a good out-of-band rejection.","PeriodicalId":39469,"journal":{"name":"Advances in Engineering Education","volume":"22 1","pages":"2360-2363"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Design of a single-slab low-profile frequency selective surface\",\"authors\":\"A. Lalbakhsh, K. Esselle, S. Smith\",\"doi\":\"10.1109/PIERS-FALL.2017.8293531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an extremely thin bandpass frequency selective surface (FSS) operating in X-band. The center frequency of the FSS is 11GHz and its 3-dB fractional bandwidth is 19%. The FSS is composed of conductive circular patches on one side and inductive square rings on the other side of a thin substrate. The diameter of the circular patches, the width of the square rings and the thickness of the substrate are determined using an iterative optimization technique to make the structure resonate at the required frequency. A multi-objective fitness function is used to monitor the scattering parameters to achieve the minimum insertion loss at the center frequency and a good out-of-band rejection.\",\"PeriodicalId\":39469,\"journal\":{\"name\":\"Advances in Engineering Education\",\"volume\":\"22 1\",\"pages\":\"2360-2363\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Engineering Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIERS-FALL.2017.8293531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIERS-FALL.2017.8293531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种工作在x波段的极薄带通频率选择表面(FSS)。FSS的中心频率为11GHz, 3db分数带宽为19%。FSS由薄衬底的一侧导电圆形贴片和另一侧电感方形环组成。利用迭代优化技术确定了圆形贴片的直径、方形环的宽度和衬底的厚度,以使结构在所需的频率上共振。采用多目标适应度函数对散射参数进行监测,使中心频率处的插入损耗最小,并具有良好的带外抑制效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a single-slab low-profile frequency selective surface
This paper presents an extremely thin bandpass frequency selective surface (FSS) operating in X-band. The center frequency of the FSS is 11GHz and its 3-dB fractional bandwidth is 19%. The FSS is composed of conductive circular patches on one side and inductive square rings on the other side of a thin substrate. The diameter of the circular patches, the width of the square rings and the thickness of the substrate are determined using an iterative optimization technique to make the structure resonate at the required frequency. A multi-objective fitness function is used to monitor the scattering parameters to achieve the minimum insertion loss at the center frequency and a good out-of-band rejection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Engineering Education
Advances in Engineering Education Social Sciences-Education
CiteScore
2.90
自引率
0.00%
发文量
8
期刊介绍: The journal publishes articles on a wide variety of topics related to documented advances in engineering education practice. Topics may include but are not limited to innovations in course and curriculum design, teaching, and assessment both within and outside of the classroom that have led to improved student learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信