{"title":"湍流边界层的多平面特性","authors":"K. Dennis, K. Siddiqui","doi":"10.1115/FEDSM2018-83507","DOIUrl":null,"url":null,"abstract":"The boundary layers are known for their significance in several engineering systems. In particular, the inner region of the turbulent boundary layer has been shown to play a significant role in controlling the dynamics of turbulent structures that are responsible for the transport of mass, heat and momentum. While substantial work has been done in the past to characterize the structure of turbulent flow in this region, the characterization of the three-dimensional turbulent flow structure is limited. This study reports a multi-plane particle image velocimetry (PIV) approach to investigate three-dimensional dynamics of the turbulent boundary layer in the near-wall region. Planar PIV is used to capture two-dimensional fluid velocity fields in several planes with respect to the fluid flow direction. These results are used to describe three-dimensional turbulent events given by key quantities such as mean and turbulent velocities and turbulent kinetic energy.","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"1990 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Plane Characterization of the Turbulent Boundary Layer\",\"authors\":\"K. Dennis, K. Siddiqui\",\"doi\":\"10.1115/FEDSM2018-83507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The boundary layers are known for their significance in several engineering systems. In particular, the inner region of the turbulent boundary layer has been shown to play a significant role in controlling the dynamics of turbulent structures that are responsible for the transport of mass, heat and momentum. While substantial work has been done in the past to characterize the structure of turbulent flow in this region, the characterization of the three-dimensional turbulent flow structure is limited. This study reports a multi-plane particle image velocimetry (PIV) approach to investigate three-dimensional dynamics of the turbulent boundary layer in the near-wall region. Planar PIV is used to capture two-dimensional fluid velocity fields in several planes with respect to the fluid flow direction. These results are used to describe three-dimensional turbulent events given by key quantities such as mean and turbulent velocities and turbulent kinetic energy.\",\"PeriodicalId\":23480,\"journal\":{\"name\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"volume\":\"1990 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/FEDSM2018-83507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Plane Characterization of the Turbulent Boundary Layer
The boundary layers are known for their significance in several engineering systems. In particular, the inner region of the turbulent boundary layer has been shown to play a significant role in controlling the dynamics of turbulent structures that are responsible for the transport of mass, heat and momentum. While substantial work has been done in the past to characterize the structure of turbulent flow in this region, the characterization of the three-dimensional turbulent flow structure is limited. This study reports a multi-plane particle image velocimetry (PIV) approach to investigate three-dimensional dynamics of the turbulent boundary layer in the near-wall region. Planar PIV is used to capture two-dimensional fluid velocity fields in several planes with respect to the fluid flow direction. These results are used to describe three-dimensional turbulent events given by key quantities such as mean and turbulent velocities and turbulent kinetic energy.