{"title":"Accelerated Prediction of Photon Transport in Nanoparticle Media Using Machine Learning Trained with Monte Carlo Simulations","authors":"Daniel Carne, J. Peoples, Dudong Feng, X. Ruan","doi":"10.1115/1.4062188","DOIUrl":null,"url":null,"abstract":"\n Monte Carlo simulations for photon transport are commonly used to predict the spectral response, including reflectance, absorptance, and transmittance in nanoparticle laden media, while the computational cost could be high. In this study, we demonstrate a general purpose fully connected neural network approach, trained with Monte Carlo simulations, to accurately predict the spectral response while dramatically accelerating the computational speed. Monte Carlo simulations are first used to generate a training set with a wide range of optical properties covering dielectrics, semiconductors, and metals. Each input is normalized, with the scattering and absorption coefficients normalized on a logarithmic scale to accelerate the training process and reduce error. A deep neural network with ReLU activation is trained on this dataset with the optical properties and medium thickness as the inputs, and diffuse reflectance, absorptance, and transmittance as the outputs. The neural network is validated on a validation set with randomized optical properties, as well as nanoparticle medium examples including barium sulfate, aluminum, and silicon. The error in the spectral response predictions is within 1% which is sufficient for many applications, while the speedup is 1-3 orders of magnitude. This machine learning accelerated approach can allow for high throughput screening, optimization, or real time monitoring of nanoparticle media's spectral response.","PeriodicalId":15937,"journal":{"name":"Journal of Heat Transfer-transactions of The Asme","volume":"24 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heat Transfer-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062188","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Accelerated Prediction of Photon Transport in Nanoparticle Media Using Machine Learning Trained with Monte Carlo Simulations
Monte Carlo simulations for photon transport are commonly used to predict the spectral response, including reflectance, absorptance, and transmittance in nanoparticle laden media, while the computational cost could be high. In this study, we demonstrate a general purpose fully connected neural network approach, trained with Monte Carlo simulations, to accurately predict the spectral response while dramatically accelerating the computational speed. Monte Carlo simulations are first used to generate a training set with a wide range of optical properties covering dielectrics, semiconductors, and metals. Each input is normalized, with the scattering and absorption coefficients normalized on a logarithmic scale to accelerate the training process and reduce error. A deep neural network with ReLU activation is trained on this dataset with the optical properties and medium thickness as the inputs, and diffuse reflectance, absorptance, and transmittance as the outputs. The neural network is validated on a validation set with randomized optical properties, as well as nanoparticle medium examples including barium sulfate, aluminum, and silicon. The error in the spectral response predictions is within 1% which is sufficient for many applications, while the speedup is 1-3 orders of magnitude. This machine learning accelerated approach can allow for high throughput screening, optimization, or real time monitoring of nanoparticle media's spectral response.
期刊介绍:
Topical areas including, but not limited to: Biological heat and mass transfer; Combustion and reactive flows; Conduction; Electronic and photonic cooling; Evaporation, boiling, and condensation; Experimental techniques; Forced convection; Heat exchanger fundamentals; Heat transfer enhancement; Combined heat and mass transfer; Heat transfer in manufacturing; Jets, wakes, and impingement cooling; Melting and solidification; Microscale and nanoscale heat and mass transfer; Natural and mixed convection; Porous media; Radiative heat transfer; Thermal systems; Two-phase flow and heat transfer. Such topical areas may be seen in: Aerospace; The environment; Gas turbines; Biotechnology; Electronic and photonic processes and equipment; Energy systems, Fire and combustion, heat pipes, manufacturing and materials processing, low temperature and arctic region heat transfer; Refrigeration and air conditioning; Homeland security systems; Multi-phase processes; Microscale and nanoscale devices and processes.