{"title":"具有时间独立执行的目标分配和路径规划问题求解","authors":"Keisuke Okumura, Xavier D'efago","doi":"10.1609/icaps.v32i1.19810","DOIUrl":null,"url":null,"abstract":"Real-time planning for a combined problem of target assignment and path planning for multiple agents, also known as the unlabeled version of Multi-Agent Path Finding (MAPF), is crucial for high-level coordination in multi-agent systems, e.g., pattern formation by robot swarms. This paper studies two aspects of unlabeled-MAPF: (1) offline scenario: solving large instances by centralized approaches with small computation time, and (2) online scenario: executing unlabeled-MAPF despite timing uncertainties of real robots. For this purpose, we propose TSWAP, a novel sub-optimal complete algorithm, which takes an arbitrary initial target assignment then repeats one-timestep path planning with target swapping. TSWAP can adapt to both offline and online scenarios. We empirically demonstrate that Offline TSWAP is highly scalable; providing near-optimal solutions while reducing runtime by orders of magnitude compared to existing approaches. In addition, we present the benefits of Online TSWAP, such as delay tolerance, through real-robot demos.","PeriodicalId":8496,"journal":{"name":"Artif. Intell.","volume":"27 1","pages":"103946"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Solving Simultaneous Target Assignment and Path Planning Efficiently with Time-Independent Execution\",\"authors\":\"Keisuke Okumura, Xavier D'efago\",\"doi\":\"10.1609/icaps.v32i1.19810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time planning for a combined problem of target assignment and path planning for multiple agents, also known as the unlabeled version of Multi-Agent Path Finding (MAPF), is crucial for high-level coordination in multi-agent systems, e.g., pattern formation by robot swarms. This paper studies two aspects of unlabeled-MAPF: (1) offline scenario: solving large instances by centralized approaches with small computation time, and (2) online scenario: executing unlabeled-MAPF despite timing uncertainties of real robots. For this purpose, we propose TSWAP, a novel sub-optimal complete algorithm, which takes an arbitrary initial target assignment then repeats one-timestep path planning with target swapping. TSWAP can adapt to both offline and online scenarios. We empirically demonstrate that Offline TSWAP is highly scalable; providing near-optimal solutions while reducing runtime by orders of magnitude compared to existing approaches. In addition, we present the benefits of Online TSWAP, such as delay tolerance, through real-robot demos.\",\"PeriodicalId\":8496,\"journal\":{\"name\":\"Artif. Intell.\",\"volume\":\"27 1\",\"pages\":\"103946\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artif. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icaps.v32i1.19810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v32i1.19810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solving Simultaneous Target Assignment and Path Planning Efficiently with Time-Independent Execution
Real-time planning for a combined problem of target assignment and path planning for multiple agents, also known as the unlabeled version of Multi-Agent Path Finding (MAPF), is crucial for high-level coordination in multi-agent systems, e.g., pattern formation by robot swarms. This paper studies two aspects of unlabeled-MAPF: (1) offline scenario: solving large instances by centralized approaches with small computation time, and (2) online scenario: executing unlabeled-MAPF despite timing uncertainties of real robots. For this purpose, we propose TSWAP, a novel sub-optimal complete algorithm, which takes an arbitrary initial target assignment then repeats one-timestep path planning with target swapping. TSWAP can adapt to both offline and online scenarios. We empirically demonstrate that Offline TSWAP is highly scalable; providing near-optimal solutions while reducing runtime by orders of magnitude compared to existing approaches. In addition, we present the benefits of Online TSWAP, such as delay tolerance, through real-robot demos.