调制空间中的平滑估计和初始数据缓慢衰减的NLS

R. Schippa
{"title":"调制空间中的平滑估计和初始数据缓慢衰减的NLS","authors":"R. Schippa","doi":"10.5445/IR/1000132421","DOIUrl":null,"url":null,"abstract":"We show new local $L^p$-smoothing estimates for the Schrodinger equation with initial data in modulation spaces via decoupling inequalities. Furthermore, we probe necessary conditions by Knapp-type examples for space-time estimates of solutions with initial data in modulation and $L^p$-spaces. The examples show sharpness of the smoothing estimates up to the endpoint regularity in a certain range. Moreover, the examples rule out global Strichartz estimates for initial data in $L^p(\\mathbb{R}^d)$ for $d \\ge 1$ and $p>2$, which was previously known for $d \\ge 2$. The estimates are applied to show new local and global well-posedness results for the cubic nonlinear Schrodinger equation on the line. Lastly, we show $\\ell^2$ -decoupling inequalities for variable-coefficient versions of elliptic and non-elliptic Schrodinger phase functions.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On smoothing estimates in modulation spaces and the NLS with slowly decaying initial data\",\"authors\":\"R. Schippa\",\"doi\":\"10.5445/IR/1000132421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show new local $L^p$-smoothing estimates for the Schrodinger equation with initial data in modulation spaces via decoupling inequalities. Furthermore, we probe necessary conditions by Knapp-type examples for space-time estimates of solutions with initial data in modulation and $L^p$-spaces. The examples show sharpness of the smoothing estimates up to the endpoint regularity in a certain range. Moreover, the examples rule out global Strichartz estimates for initial data in $L^p(\\\\mathbb{R}^d)$ for $d \\\\ge 1$ and $p>2$, which was previously known for $d \\\\ge 2$. The estimates are applied to show new local and global well-posedness results for the cubic nonlinear Schrodinger equation on the line. Lastly, we show $\\\\ell^2$ -decoupling inequalities for variable-coefficient versions of elliptic and non-elliptic Schrodinger phase functions.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5445/IR/1000132421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5445/IR/1000132421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过解耦不等式给出了调制空间中具有初始数据的薛定谔方程的新的局部L^p$平滑估计。进一步,我们通过knapp类型的例子探讨了在调制和L^p$-空间中具有初始数据的解的时空估计的必要条件。实例显示了平滑估计在一定范围内达到端点规则性的清晰度。此外,这些例子排除了初始数据在$L^p(\mathbb{R}^d)$中对于$d \ge 1$和$p>2$的全局Strichartz估计,它以前被称为$d \ge 2$。利用这些估计给出了三次非线性薛定谔方程在直线上的新的局部和全局适定性结果。最后,我们给出了椭圆型和非椭圆型薛定谔相函数变系数版本的$\ well ^2$ -解耦不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On smoothing estimates in modulation spaces and the NLS with slowly decaying initial data
We show new local $L^p$-smoothing estimates for the Schrodinger equation with initial data in modulation spaces via decoupling inequalities. Furthermore, we probe necessary conditions by Knapp-type examples for space-time estimates of solutions with initial data in modulation and $L^p$-spaces. The examples show sharpness of the smoothing estimates up to the endpoint regularity in a certain range. Moreover, the examples rule out global Strichartz estimates for initial data in $L^p(\mathbb{R}^d)$ for $d \ge 1$ and $p>2$, which was previously known for $d \ge 2$. The estimates are applied to show new local and global well-posedness results for the cubic nonlinear Schrodinger equation on the line. Lastly, we show $\ell^2$ -decoupling inequalities for variable-coefficient versions of elliptic and non-elliptic Schrodinger phase functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信