抛物子群结构的约化

IF 0.9 3区 数学 Q2 MATHEMATICS
Danny Ofek
{"title":"抛物子群结构的约化","authors":"Danny Ofek","doi":"10.4171/dm/901","DOIUrl":null,"url":null,"abstract":". Let G be an affine group over a field of characteristic not two. A G -torsor is called isotropic if it admits reduction of structure to a proper parabolic subgroup of G . This definition generalizes isotropy of affine groups and involutions of central simple algebras. When does G admit anisotropic torsors? Building on work of J. Tits, we answer this question for simple groups. We also give an answer for connected and semisimple G under certain restrictions on its root system.","PeriodicalId":50567,"journal":{"name":"Documenta Mathematica","volume":"05 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction of structure to parabolic subgroups\",\"authors\":\"Danny Ofek\",\"doi\":\"10.4171/dm/901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let G be an affine group over a field of characteristic not two. A G -torsor is called isotropic if it admits reduction of structure to a proper parabolic subgroup of G . This definition generalizes isotropy of affine groups and involutions of central simple algebras. When does G admit anisotropic torsors? Building on work of J. Tits, we answer this question for simple groups. We also give an answer for connected and semisimple G under certain restrictions on its root system.\",\"PeriodicalId\":50567,\"journal\":{\"name\":\"Documenta Mathematica\",\"volume\":\"05 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Documenta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/dm/901\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documenta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/dm/901","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

. 设G是特征不为2的域上的仿射群。如果一个G -扭量的结构可以简化为G的一个固有抛物子群,那么它就是各向同性的。这个定义推广了仿射群的各向同性和中心简单代数的对合。什么时候G允许各向异性扭转?在J. Tits的工作基础上,我们回答了简单群体的这个问题。在一定的根系限制条件下,给出了连通G和半单根G的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduction of structure to parabolic subgroups
. Let G be an affine group over a field of characteristic not two. A G -torsor is called isotropic if it admits reduction of structure to a proper parabolic subgroup of G . This definition generalizes isotropy of affine groups and involutions of central simple algebras. When does G admit anisotropic torsors? Building on work of J. Tits, we answer this question for simple groups. We also give an answer for connected and semisimple G under certain restrictions on its root system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Documenta Mathematica
Documenta Mathematica 数学-数学
CiteScore
1.60
自引率
11.10%
发文量
0
审稿时长
>12 weeks
期刊介绍: DOCUMENTA MATHEMATICA is open to all mathematical fields und internationally oriented Documenta Mathematica publishes excellent and carefully refereed articles of general interest, which preferably should rely only on refereed sources and references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信