Junhyuk Choi, S. Lee, Seung-jong Kim, Jong Min Lee, Hyungmin Kim
{"title":"利用脑电图检测自主步态启动/终止意图","authors":"Junhyuk Choi, S. Lee, Seung-jong Kim, Jong Min Lee, Hyungmin Kim","doi":"10.1109/IWW-BCI.2018.8311532","DOIUrl":null,"url":null,"abstract":"In this study, we employed a linear classifier to grasp the abstract features of electroencephalography (EEG) for recognizing voluntary gait intention and termination. We monitored Mu-band EEG to find gait intention and tried to detect a movement on/offset. Considerable gait-related (de) synchronization occurred hence, amplified by common spatial pattern (CSP). Performance of the classifier was evaluated in terms of classification success rates and false positive rates.","PeriodicalId":6537,"journal":{"name":"2018 6th International Conference on Brain-Computer Interface (BCI)","volume":"9 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Detecting voluntary gait initiation/termination intention using EEG\",\"authors\":\"Junhyuk Choi, S. Lee, Seung-jong Kim, Jong Min Lee, Hyungmin Kim\",\"doi\":\"10.1109/IWW-BCI.2018.8311532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we employed a linear classifier to grasp the abstract features of electroencephalography (EEG) for recognizing voluntary gait intention and termination. We monitored Mu-band EEG to find gait intention and tried to detect a movement on/offset. Considerable gait-related (de) synchronization occurred hence, amplified by common spatial pattern (CSP). Performance of the classifier was evaluated in terms of classification success rates and false positive rates.\",\"PeriodicalId\":6537,\"journal\":{\"name\":\"2018 6th International Conference on Brain-Computer Interface (BCI)\",\"volume\":\"9 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 6th International Conference on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2018.8311532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2018.8311532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detecting voluntary gait initiation/termination intention using EEG
In this study, we employed a linear classifier to grasp the abstract features of electroencephalography (EEG) for recognizing voluntary gait intention and termination. We monitored Mu-band EEG to find gait intention and tried to detect a movement on/offset. Considerable gait-related (de) synchronization occurred hence, amplified by common spatial pattern (CSP). Performance of the classifier was evaluated in terms of classification success rates and false positive rates.