Thiemo Karwinkel, M. Winklhofer, Lars Erik Janner, Vera Brust, O. Hüppop, F. Bairlein, Heiko Schmaljohann
{"title":"磁脉冲不影响春季中距离候鸟的自由飞行导航行为","authors":"Thiemo Karwinkel, M. Winklhofer, Lars Erik Janner, Vera Brust, O. Hüppop, F. Bairlein, Heiko Schmaljohann","doi":"10.1101/2022.04.28.489840","DOIUrl":null,"url":null,"abstract":"Current evidence suggests that migratory animals extract map information from the geomagnetic field for true navigation. The sensory basis underlying this feat is elusive, but presumably involves magnetic particles. A common experimental manipulation procedure consists of pre-treating animals with a magnetic pulse. This aims at re-magnetising particles to alter the internal representation of the external field prior to a navigation task. While pulsing provoked deflected bearings in laboratory experiments, analogous studies with free-flying songbirds yielded inconsistent results. Here, we pulsed European robins (Erithacus rubecula), being medium-distance migrants, at an offshore stopover site during spring migration and monitored their free-flight behaviour with a regional-scale tracking system. We found no pulse effect on departure probability, nocturnal departure timing, or departure direction, in agreement with results on a long-distance migrant released at the same site in autumn. This necessitates a reassessment of the importance of geomagnetic maps for migratory decisions for free-flying birds. Summary statement Magnetic pulse pre-treatment disturbs geomagnetic map usage of birds in lab environments. However, our free-flying birds show no effect, suggesting geomagnetic map information is less important in the natural environment.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A magnetic pulse does not affect free-flight navigation behaviour of a medium-distance songbird migrant in spring\",\"authors\":\"Thiemo Karwinkel, M. Winklhofer, Lars Erik Janner, Vera Brust, O. Hüppop, F. Bairlein, Heiko Schmaljohann\",\"doi\":\"10.1101/2022.04.28.489840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current evidence suggests that migratory animals extract map information from the geomagnetic field for true navigation. The sensory basis underlying this feat is elusive, but presumably involves magnetic particles. A common experimental manipulation procedure consists of pre-treating animals with a magnetic pulse. This aims at re-magnetising particles to alter the internal representation of the external field prior to a navigation task. While pulsing provoked deflected bearings in laboratory experiments, analogous studies with free-flying songbirds yielded inconsistent results. Here, we pulsed European robins (Erithacus rubecula), being medium-distance migrants, at an offshore stopover site during spring migration and monitored their free-flight behaviour with a regional-scale tracking system. We found no pulse effect on departure probability, nocturnal departure timing, or departure direction, in agreement with results on a long-distance migrant released at the same site in autumn. This necessitates a reassessment of the importance of geomagnetic maps for migratory decisions for free-flying birds. Summary statement Magnetic pulse pre-treatment disturbs geomagnetic map usage of birds in lab environments. However, our free-flying birds show no effect, suggesting geomagnetic map information is less important in the natural environment.\",\"PeriodicalId\":22458,\"journal\":{\"name\":\"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2022.04.28.489840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2022.04.28.489840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A magnetic pulse does not affect free-flight navigation behaviour of a medium-distance songbird migrant in spring
Current evidence suggests that migratory animals extract map information from the geomagnetic field for true navigation. The sensory basis underlying this feat is elusive, but presumably involves magnetic particles. A common experimental manipulation procedure consists of pre-treating animals with a magnetic pulse. This aims at re-magnetising particles to alter the internal representation of the external field prior to a navigation task. While pulsing provoked deflected bearings in laboratory experiments, analogous studies with free-flying songbirds yielded inconsistent results. Here, we pulsed European robins (Erithacus rubecula), being medium-distance migrants, at an offshore stopover site during spring migration and monitored their free-flight behaviour with a regional-scale tracking system. We found no pulse effect on departure probability, nocturnal departure timing, or departure direction, in agreement with results on a long-distance migrant released at the same site in autumn. This necessitates a reassessment of the importance of geomagnetic maps for migratory decisions for free-flying birds. Summary statement Magnetic pulse pre-treatment disturbs geomagnetic map usage of birds in lab environments. However, our free-flying birds show no effect, suggesting geomagnetic map information is less important in the natural environment.