并行化使用任务并行库和基于任务的编程模型

Xinhong Hei, Jinlong Zhang, Bin Wang, Haiyan Jin, Nasser Giacaman
{"title":"并行化使用任务并行库和基于任务的编程模型","authors":"Xinhong Hei, Jinlong Zhang, Bin Wang, Haiyan Jin, Nasser Giacaman","doi":"10.1109/ICSESS.2014.6933653","DOIUrl":null,"url":null,"abstract":"In order to reduce the complexity of traditional multithreaded parallel programming, this paper explores a new task-based parallel programming using the Microsoft .NET Task Parallel Library (TPL). Firstly, this paper proposes a custom data partitioning optimization method to achieve an efficient data parallelism, and applies it to the matrix multiplication. The result of the application supports the custom data partitioning optimization method. Then we develop a task parallel application: Image Blender, and this application explains the efficiency and pitfall aspects associated with task parallelism. Finally, the paper analyzes the performance of our applications. Experiments results show that TPL can dramatically alleviate programmer burden and boost the performance of programs with its task-based parallel programming mechanism.","PeriodicalId":6473,"journal":{"name":"2014 IEEE 5th International Conference on Software Engineering and Service Science","volume":"2013 1","pages":"653-656"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parallelization using task parallel library with task-based programming model\",\"authors\":\"Xinhong Hei, Jinlong Zhang, Bin Wang, Haiyan Jin, Nasser Giacaman\",\"doi\":\"10.1109/ICSESS.2014.6933653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to reduce the complexity of traditional multithreaded parallel programming, this paper explores a new task-based parallel programming using the Microsoft .NET Task Parallel Library (TPL). Firstly, this paper proposes a custom data partitioning optimization method to achieve an efficient data parallelism, and applies it to the matrix multiplication. The result of the application supports the custom data partitioning optimization method. Then we develop a task parallel application: Image Blender, and this application explains the efficiency and pitfall aspects associated with task parallelism. Finally, the paper analyzes the performance of our applications. Experiments results show that TPL can dramatically alleviate programmer burden and boost the performance of programs with its task-based parallel programming mechanism.\",\"PeriodicalId\":6473,\"journal\":{\"name\":\"2014 IEEE 5th International Conference on Software Engineering and Service Science\",\"volume\":\"2013 1\",\"pages\":\"653-656\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 5th International Conference on Software Engineering and Service Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS.2014.6933653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 5th International Conference on Software Engineering and Service Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2014.6933653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了降低传统多线程并行编程的复杂性,本文利用Microsoft . net任务并行库(TPL)探索了一种新的基于任务的并行编程方法。首先,本文提出了一种自定义数据分区优化方法,以实现高效的数据并行性,并将其应用于矩阵乘法。应用程序的结果支持自定义数据分区优化方法。然后我们开发了一个任务并行应用程序:Image Blender,这个应用程序解释了与任务并行相关的效率和陷阱方面。最后,对我们的应用进行了性能分析。实验结果表明,TPL基于任务的并行编程机制可以显著减轻程序员的负担,提高程序的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallelization using task parallel library with task-based programming model
In order to reduce the complexity of traditional multithreaded parallel programming, this paper explores a new task-based parallel programming using the Microsoft .NET Task Parallel Library (TPL). Firstly, this paper proposes a custom data partitioning optimization method to achieve an efficient data parallelism, and applies it to the matrix multiplication. The result of the application supports the custom data partitioning optimization method. Then we develop a task parallel application: Image Blender, and this application explains the efficiency and pitfall aspects associated with task parallelism. Finally, the paper analyzes the performance of our applications. Experiments results show that TPL can dramatically alleviate programmer burden and boost the performance of programs with its task-based parallel programming mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信