{"title":"分子马达——大自然的工作效率","authors":"W. Teizer","doi":"10.1142/s2424942422400126","DOIUrl":null,"url":null,"abstract":"Nature has generated sophisticated and very efficient molecular motors, employed for nanoscale transport at the intracellular level. As a complementary tool to nanofluidics, these motors have been envisioned for nanotechnological devices. In order to pave the way for such applications, a thorough understanding of the mechanisms governing these motors is needed. Because of the complexity of their in vivo functions, this understanding is best acquired in vitro, where functional parameters can independently be controlled. I will report on work in my group that studies and harnesses the transport properties of molecular motors on functionalized structures of reduced dimensionality such as carbon nanotubes, 1 lithographically designed electrodes, 2 microwires, 3 loops 4 and swarms. 5 In addition, I will show results that demonstrate the potential of this work for biomedical advances. 6","PeriodicalId":52944,"journal":{"name":"Reports in Advances of Physical Sciences","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Motors–Nature’s Efficiency at Work\",\"authors\":\"W. Teizer\",\"doi\":\"10.1142/s2424942422400126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nature has generated sophisticated and very efficient molecular motors, employed for nanoscale transport at the intracellular level. As a complementary tool to nanofluidics, these motors have been envisioned for nanotechnological devices. In order to pave the way for such applications, a thorough understanding of the mechanisms governing these motors is needed. Because of the complexity of their in vivo functions, this understanding is best acquired in vitro, where functional parameters can independently be controlled. I will report on work in my group that studies and harnesses the transport properties of molecular motors on functionalized structures of reduced dimensionality such as carbon nanotubes, 1 lithographically designed electrodes, 2 microwires, 3 loops 4 and swarms. 5 In addition, I will show results that demonstrate the potential of this work for biomedical advances. 6\",\"PeriodicalId\":52944,\"journal\":{\"name\":\"Reports in Advances of Physical Sciences\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports in Advances of Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2424942422400126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports in Advances of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424942422400126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nature has generated sophisticated and very efficient molecular motors, employed for nanoscale transport at the intracellular level. As a complementary tool to nanofluidics, these motors have been envisioned for nanotechnological devices. In order to pave the way for such applications, a thorough understanding of the mechanisms governing these motors is needed. Because of the complexity of their in vivo functions, this understanding is best acquired in vitro, where functional parameters can independently be controlled. I will report on work in my group that studies and harnesses the transport properties of molecular motors on functionalized structures of reduced dimensionality such as carbon nanotubes, 1 lithographically designed electrodes, 2 microwires, 3 loops 4 and swarms. 5 In addition, I will show results that demonstrate the potential of this work for biomedical advances. 6