基于双级参数辨识的脉冲和高斯混合噪声非凸去噪模型

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
L. Afraites, A. Hadri, A. Laghrib, M. Nachaoui
{"title":"基于双级参数辨识的脉冲和高斯混合噪声非凸去噪模型","authors":"L. Afraites, A. Hadri, A. Laghrib, M. Nachaoui","doi":"10.3934/ipi.2022001","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We propose a new variational framework to remove a mixture of Gaussian and impulse noise from images. This framework is based on a non-convex PDE-constrained with a fractional-order operator. The non-convex norm is applied to the impulse component controlled by a weighted parameter <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\gamma $\\end{document}</tex-math></inline-formula>, which depends on the level of the impulse noise and image feature. Furthermore, the fractional operator is used to preserve image texture and edges. In a first part, we study the theoretical properties of the proposed PDE-constrained, and we show some well-posdnees results. In a second part, after having demonstrated how to numerically find a minimizer, a proximal linearized algorithm combined with a Primal-Dual approach is introduced. Moreover, a bi-level optimization framework with a projected gradient algorithm is proposed in order to automatically select the parameter <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\gamma $\\end{document}</tex-math></inline-formula>. Denoising tests confirm that the non-convex term and learned parameter <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\gamma $\\end{document}</tex-math></inline-formula> lead in general to an improved reconstruction when compared to results of convex norm and other competitive denoising methods. Finally, we show extensive denoising experiments on various images and noise intensities and we report conventional numerical results which confirm the validity of the non-convex PDE-constrained, its analysis and also the proposed bi-level optimization with learning data.</p>","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A non-convex denoising model for impulse and Gaussian noise mixture removing using bi-level parameter identification\",\"authors\":\"L. Afraites, A. Hadri, A. Laghrib, M. Nachaoui\",\"doi\":\"10.3934/ipi.2022001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We propose a new variational framework to remove a mixture of Gaussian and impulse noise from images. This framework is based on a non-convex PDE-constrained with a fractional-order operator. The non-convex norm is applied to the impulse component controlled by a weighted parameter <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\gamma $\\\\end{document}</tex-math></inline-formula>, which depends on the level of the impulse noise and image feature. Furthermore, the fractional operator is used to preserve image texture and edges. In a first part, we study the theoretical properties of the proposed PDE-constrained, and we show some well-posdnees results. In a second part, after having demonstrated how to numerically find a minimizer, a proximal linearized algorithm combined with a Primal-Dual approach is introduced. Moreover, a bi-level optimization framework with a projected gradient algorithm is proposed in order to automatically select the parameter <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ \\\\gamma $\\\\end{document}</tex-math></inline-formula>. Denoising tests confirm that the non-convex term and learned parameter <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\gamma $\\\\end{document}</tex-math></inline-formula> lead in general to an improved reconstruction when compared to results of convex norm and other competitive denoising methods. Finally, we show extensive denoising experiments on various images and noise intensities and we report conventional numerical results which confirm the validity of the non-convex PDE-constrained, its analysis and also the proposed bi-level optimization with learning data.</p>\",\"PeriodicalId\":50274,\"journal\":{\"name\":\"Inverse Problems and Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems and Imaging\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/ipi.2022001\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2022001","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9

摘要

We propose a new variational framework to remove a mixture of Gaussian and impulse noise from images. This framework is based on a non-convex PDE-constrained with a fractional-order operator. The non-convex norm is applied to the impulse component controlled by a weighted parameter \begin{document}$ \gamma $\end{document}, which depends on the level of the impulse noise and image feature. Furthermore, the fractional operator is used to preserve image texture and edges. In a first part, we study the theoretical properties of the proposed PDE-constrained, and we show some well-posdnees results. In a second part, after having demonstrated how to numerically find a minimizer, a proximal linearized algorithm combined with a Primal-Dual approach is introduced. Moreover, a bi-level optimization framework with a projected gradient algorithm is proposed in order to automatically select the parameter \begin{document}$ \gamma $\end{document}. Denoising tests confirm that the non-convex term and learned parameter \begin{document}$ \gamma $\end{document} lead in general to an improved reconstruction when compared to results of convex norm and other competitive denoising methods. Finally, we show extensive denoising experiments on various images and noise intensities and we report conventional numerical results which confirm the validity of the non-convex PDE-constrained, its analysis and also the proposed bi-level optimization with learning data.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A non-convex denoising model for impulse and Gaussian noise mixture removing using bi-level parameter identification

We propose a new variational framework to remove a mixture of Gaussian and impulse noise from images. This framework is based on a non-convex PDE-constrained with a fractional-order operator. The non-convex norm is applied to the impulse component controlled by a weighted parameter \begin{document}$ \gamma $\end{document}, which depends on the level of the impulse noise and image feature. Furthermore, the fractional operator is used to preserve image texture and edges. In a first part, we study the theoretical properties of the proposed PDE-constrained, and we show some well-posdnees results. In a second part, after having demonstrated how to numerically find a minimizer, a proximal linearized algorithm combined with a Primal-Dual approach is introduced. Moreover, a bi-level optimization framework with a projected gradient algorithm is proposed in order to automatically select the parameter \begin{document}$ \gamma $\end{document}. Denoising tests confirm that the non-convex term and learned parameter \begin{document}$ \gamma $\end{document} lead in general to an improved reconstruction when compared to results of convex norm and other competitive denoising methods. Finally, we show extensive denoising experiments on various images and noise intensities and we report conventional numerical results which confirm the validity of the non-convex PDE-constrained, its analysis and also the proposed bi-level optimization with learning data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inverse Problems and Imaging
Inverse Problems and Imaging 数学-物理:数学物理
CiteScore
2.50
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing. This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信