{"title":"用改进迭代法求解绝对值方程","authors":"Rashid Ali","doi":"10.1155/2022/2828457","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This article suggests two new modified iteration methods called the modified Gauss-Seidel (MGS) method and the modified fixed point (MFP) method to solve the absolute value equation. Using appropriate assumptions, we examine the convergence of the given methods. Lastly, numerical examples illustrate the usefulness of the new strategies.</p>\n </div>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2022 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2022/2828457","citationCount":"0","resultStr":"{\"title\":\"Numerical Solution of the Absolute Value Equation Using Modified Iteration Methods\",\"authors\":\"Rashid Ali\",\"doi\":\"10.1155/2022/2828457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>This article suggests two new modified iteration methods called the modified Gauss-Seidel (MGS) method and the modified fixed point (MFP) method to solve the absolute value equation. Using appropriate assumptions, we examine the convergence of the given methods. Lastly, numerical examples illustrate the usefulness of the new strategies.</p>\\n </div>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"2022 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2022/2828457\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2022/2828457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2022/2828457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Numerical Solution of the Absolute Value Equation Using Modified Iteration Methods
This article suggests two new modified iteration methods called the modified Gauss-Seidel (MGS) method and the modified fixed point (MFP) method to solve the absolute value equation. Using appropriate assumptions, we examine the convergence of the given methods. Lastly, numerical examples illustrate the usefulness of the new strategies.