大余量分类的无参数混合模型

L. Torres, C. Castro, A. Braga
{"title":"大余量分类的无参数混合模型","authors":"L. Torres, C. Castro, A. Braga","doi":"10.1109/IJCNN.2015.7280782","DOIUrl":null,"url":null,"abstract":"This paper presents a geometrical approach for obtaining large margin classifiers. The method aims at exploring the geometrical properties of the dataset from the structure of a Gabriel graph, which represents pattern relations according to a given distance metric, such as the Euclidean distance. Once the graph is generated, geometric vectors, analogous to SVM's support vectors are obtained in order to yield the final large margin solution from a mixture model approach. A preliminary experimental study with five real-world benchmarks showed that the method is promising.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"45 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A parameterless mixture model for large margin classification\",\"authors\":\"L. Torres, C. Castro, A. Braga\",\"doi\":\"10.1109/IJCNN.2015.7280782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a geometrical approach for obtaining large margin classifiers. The method aims at exploring the geometrical properties of the dataset from the structure of a Gabriel graph, which represents pattern relations according to a given distance metric, such as the Euclidean distance. Once the graph is generated, geometric vectors, analogous to SVM's support vectors are obtained in order to yield the final large margin solution from a mixture model approach. A preliminary experimental study with five real-world benchmarks showed that the method is promising.\",\"PeriodicalId\":6539,\"journal\":{\"name\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"45 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2015.7280782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种获取大边缘分类器的几何方法。该方法旨在从加布里埃尔图的结构探索数据集的几何属性,加布里埃尔图根据给定的距离度量(如欧几里得距离)表示模式关系。一旦图形生成,几何向量,类似于支持向量机的支持向量获得,以产生最终的大余量解决方案,从混合模型的方法。初步的实验研究与五个现实世界的基准表明,该方法是有前途的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A parameterless mixture model for large margin classification
This paper presents a geometrical approach for obtaining large margin classifiers. The method aims at exploring the geometrical properties of the dataset from the structure of a Gabriel graph, which represents pattern relations according to a given distance metric, such as the Euclidean distance. Once the graph is generated, geometric vectors, analogous to SVM's support vectors are obtained in order to yield the final large margin solution from a mixture model approach. A preliminary experimental study with five real-world benchmarks showed that the method is promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信