长寿命时间:通过结构化梯度稀疏化提高记忆中训练引擎的寿命

Yi Cai, Yujun Lin, Lixue Xia, Xiaoming Chen, Song Han, Yu Wang, Huazhong Yang
{"title":"长寿命时间:通过结构化梯度稀疏化提高记忆中训练引擎的寿命","authors":"Yi Cai, Yujun Lin, Lixue Xia, Xiaoming Chen, Song Han, Yu Wang, Huazhong Yang","doi":"10.1145/3195970.3196071","DOIUrl":null,"url":null,"abstract":"Deeper and larger Neural Networks (NNs) have made breakthroughs in many fields. While conventional CMOS-based computing platforms are hard to achieve higher energy efficiency. RRAM-based systems provide a promising solution to build efficient Training-In-Memory Engines (TIME). While the endurance of RRAM cells is limited, it’s a severe issue as the weights of NN always need to be updated for thousands to millions of times during training. Gradient sparsification can address this problem by dropping off most of the smaller gradients but introduce unacceptable computation cost. We proposed an effective framework, SGS-ARS, including Structured Gradient Sparsification (SGS) and Aging-aware Row Swapping (ARS) scheme, to guarantee write balance across whole RRAM crossbars and prolong the lifetime of TIME. Our experiments demonstrate that 356× lifetime extension is achieved when TIME is programmed to train ResNet-50 on Imagenet dataset with our SGS-ARS framework.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"32 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Long Live TIME: Improving Lifetime for Training-In-Memory Engines by Structured Gradient Sparsification\",\"authors\":\"Yi Cai, Yujun Lin, Lixue Xia, Xiaoming Chen, Song Han, Yu Wang, Huazhong Yang\",\"doi\":\"10.1145/3195970.3196071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deeper and larger Neural Networks (NNs) have made breakthroughs in many fields. While conventional CMOS-based computing platforms are hard to achieve higher energy efficiency. RRAM-based systems provide a promising solution to build efficient Training-In-Memory Engines (TIME). While the endurance of RRAM cells is limited, it’s a severe issue as the weights of NN always need to be updated for thousands to millions of times during training. Gradient sparsification can address this problem by dropping off most of the smaller gradients but introduce unacceptable computation cost. We proposed an effective framework, SGS-ARS, including Structured Gradient Sparsification (SGS) and Aging-aware Row Swapping (ARS) scheme, to guarantee write balance across whole RRAM crossbars and prolong the lifetime of TIME. Our experiments demonstrate that 356× lifetime extension is achieved when TIME is programmed to train ResNet-50 on Imagenet dataset with our SGS-ARS framework.\",\"PeriodicalId\":6491,\"journal\":{\"name\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"volume\":\"32 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3195970.3196071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3196071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

深度更大的神经网络(NNs)在许多领域取得了突破。而传统的基于cmos的计算平台很难实现更高的能效。基于ram的系统为构建高效的内存训练引擎(TIME)提供了一个很有前途的解决方案。虽然RRAM单元的寿命有限,但这是一个严重的问题,因为在训练过程中,神经网络的权重总是需要更新数千到数百万次。梯度稀疏化可以通过减少大多数较小的梯度来解决这个问题,但会引入不可接受的计算成本。我们提出了一种有效的框架SGS-ARS,包括结构化梯度稀疏(SGS)和老化感知行交换(ARS)方案,以保证整个RRAM交叉条的写平衡并延长TIME的生命周期。我们的实验表明,当使用我们的SGS-ARS框架编程TIME在Imagenet数据集上训练ResNet-50时,实现了356倍的寿命延长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long Live TIME: Improving Lifetime for Training-In-Memory Engines by Structured Gradient Sparsification
Deeper and larger Neural Networks (NNs) have made breakthroughs in many fields. While conventional CMOS-based computing platforms are hard to achieve higher energy efficiency. RRAM-based systems provide a promising solution to build efficient Training-In-Memory Engines (TIME). While the endurance of RRAM cells is limited, it’s a severe issue as the weights of NN always need to be updated for thousands to millions of times during training. Gradient sparsification can address this problem by dropping off most of the smaller gradients but introduce unacceptable computation cost. We proposed an effective framework, SGS-ARS, including Structured Gradient Sparsification (SGS) and Aging-aware Row Swapping (ARS) scheme, to guarantee write balance across whole RRAM crossbars and prolong the lifetime of TIME. Our experiments demonstrate that 356× lifetime extension is achieved when TIME is programmed to train ResNet-50 on Imagenet dataset with our SGS-ARS framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信